روشی جدید در تعیین ورشکستگی با استفاده از تحلیل پوششی داده ها و تئوری مجموعه های راف فازی

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشکده ریاضی، دانشگاه سیستان و بلوچستان

چکیده

در شرایط متغیر اقتصادی و نوسانات شدید مالی در محیط های تجاری، وجود الگوهایی برای پیش بینی عملکرد مالی شرکتها از اهمیت بسزایی برخوردار است. یکی از این موارد پیش بینی وقوع بحران مالی و به عبارت دیگر ورشکستگی است. تحلیل پوششی داده ها (DEA) یک ابزار قدرتمند در اختیار مدیران است که عملکرد شرکت خود را در فعالیت های تجاری محک بزنند. مدلهای مرسوم تحلیل پوششی داده ها ارزیابی کارایی نسبی واحدهای تصمیم گیری (DMU) را در بهترین حالت انجام می دهند و درواقع در حالت خوشبینانه ارزیابی صورت می گیرد، ولی مدلهای دیگری در DEA معرفی شده اند که قابلیت اندازه گیری کارایی با دیدگاه بدبینانه را نیز دارند که دارای کاربردهای ویژه خود مانند ارزیابی ورشکستگی می باشند. این مقاله با استفاده از نظریه بازی های DEA و تخصیص، یک مدل جدید DEA در زمینه ورشکستگی را معرفی می کند و با تشکیل یک سیستم اطلاعاتی و استفاده از شاخص ها، ورشکستگی و کارایی را با استفاده از مفاهیم DEA راف و راف فازی محاسبه می کند. نتایج حاصل از مدل در تعیین ورشکستگی بین چند سازمان بررسی و محاسبه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A new method for determining bankruptcy using DEA and Rough set theory

نویسندگان [English]

  • aida batamiz
  • Faranak Hossein Zadeh Saljooghi
  • Ali Akbar Sanavi
Faculty of Mathematics, Sistan and Baluchestan University, Zahedan, Iran
چکیده [English]

In the changing economic conditions and volatility in financial environments in commercial is very important for predict financial performance, One of these is predict financial crisis and bankruptcy assessment. Data envelopment analysis (DEA) is a powerful tool available to managers that Benchmark your company's performance in their business activities. The conventional data envelopment DEA models are to evaluate each DMU optimistically. DEA is evaluation model from the optimistic viewpoint. In fact it will be evaluated in optimistic state. However, other models have been introduced in the DEA to measure the efficiency with which the pessimistic viewpoint of their specific applications such as assessing the failures and bankruptcy. In this paper combine Rough set theory and a new model in DEA about bankruptcy and it measure the efficiency and bankruptcy with establishment of an information system and the use of indicators calculates bankruptcy and efficiency using DEA Rough concepts and Fuzzy Rough. The results of the model in determining bankruptcies reviewed the number of organization.

کلیدواژه‌ها [English]

  • Bankruptcy
  • game theory
  • Rough set theory
  • Fuzzy Rough
  • DEA Rough
[1] Premachandra, I.M., Gurmeeet, S.B. and Toshiyuki S. (2009). DEA as a tool for bankruptcy assessment: A comparative study with logistic regression technique. European Journal of Operational Research, 193, 412-424.

[2] Altman, E.I. (1968). Financial ratios, discriminated analysis and the prediction of corporate bankruptcy. Journal of Finance, 23, 589-609.

[3] Dimitras A.I., Susmag R. and Zopounidis C. (1999). Business failure prediction using rough sets. European Journal of Operational Research, 114, 263-280.

[4] Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8, 338–353.

[5] Kaufmann, A. (1975). Introduction to the theory of fuzzy subsets. New York, AcademicPress.

[6] Zadeh, L.A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3–28.

[7] Nahmias, S. (1978). Fuzzy variables. Fuzzy Sets and Systems, 1, 97–110.

[8] Dubois, D., and Prade, H. (1988a). Fuzzy numbers: An overview, Analysis of Fuzzy Information, 2, 3–39.

[9] Dubois, D., and Prade, H. (1990). Rough fuzzy sets and fuzzy rough sets, International Journal of General Systems, 17, 191–208.

[10] Morsi, N.N., and Yakout, M.M. (1998). Axiomatics for fuzzy rough sets, Fuzzy Sets and Systems, 100, 327–342.

[11] Wang, Y. (2003). Mining stock price using fuzzy rough set system. Expert Systems with Applications, 24, 13–23.

[12] Khanjani Shiraz, R., Vincent, C. and Jalalzadeh, L. (2014). Fuzzy Rough DEA model: A possibility and expected value approaches, Expert Systems with Applications, 41, 434-444.

[13] Leobardo Plata-Pérez and Joss Sánchez-Pérez. (2011). Convexity and marginal contributions in bankruptcy games. EconoQuantum, 8, 61-72.

[14] Dagan, N., and Voliji, O. (1993). the bankruptcy problem: A cooperative bargaining approach. Mathematical Social Sciences, 26, 287-297.

[15] Charnes, A. Cooper, W.W. and Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2, 429-444.

 [16] Chambers, R.G., Chung, Y. and Fare, R. (1998). Profit directional distance function and Nerlovian efficiency. Journal of Optimization and Theory and Application, 12, 233-247

[17] Udaya, S., Pakala T.P.M. and Mallikarjunappa T. (2012). A modified directional distance formulation of DEA to assess bankruptcy: An application to IT/ITES companies in India. Expert Lists with Applications, 39, 1988-1997.

[18] Francis E.H. and Tay, L.S. (2002). Economic and Financial prediction using rough sets model. European journal of Operational Research, 141, 641-659.

[19] Malcolm J., Beynon. M. and Peel, J. (2001). Variable precision rough set theory and data discretisation: an application to corporate failure prediction. Omega, 29, 561-576.

[20] Jiuping Xu, Bin Li and Desheng Wu. (2009). Rough data envelopment analysis and its application to supply chain performance International Journal of Production Economics. 122, 628-638.

[21] Entani, T., Maeda, Y. and Hideo, T. (2002). Dual models of interval DEA and it’s extension to interval data. European Journal of Operational Research, 136, 32-45.