Bain, L.J. and Engelhardt, M. (1991), Statistical analysis of reliability and life testing models- Theory and Methods, Marcel Dekker: New York. Berger, J.O. (1985), Statistical decision theory and Bayesian analysis, 2nd ed., Springer-Verlag: ., New York. Berto, B. and Ruggeri, F. (1992) Conditional G-Minimax
actions under convex losses, Commun. Statist. Theor. Meth. , 21(4), 1051-1066. Boratynska, A. (2002), Posterior regret G-Minimax estimation in a normal model with asymmetric loss function, Applications Mathematicae , 29, 7-13. Gupta, R.D. and Kundu, D. (1997), Generalized exponential distributions, Technical report, Dept of Math., Stat. and Comp. Sci., University of New Brusnwick, Saint-John, NB, Canada. Gupta, R.D. and Kundu, D. (2001), Generalized exponential distribution: different methods of estimation, Journal of Statistical Computaion and Simulation, 69(4), 315-338. Gupta, R.D. and Kundu, D.
(2008), Generalized exponential distribution: Bayesian Inferences, Computational Statistics and Data Analysis, 52(4), 1873-1883. Jafari Jozani, M. and Parsian, A. (2008), Posterior regret gamma- minimax and prediction with application on k-records data under entropy loss function, Commun. in Stat. Theory and Method, 37(14), 2202-2212. Lehmann, E.L, and Casella, G. (1998), Theory of point estimation, 2nd ed., Springer- Verlag, New York. Meczarski, M. and Zieliski, R. (1991), Stability of Bayesian estimator of Poisson mean under the inexactly specified Gamma prior, Statistics and Probability Letter, 12, 329-333. Mudholkar, G.S, Srivastava, D.K. and Freimer, M. (1995). The exponentiated Weibull family: a reanalysis
of the bus motor failure data, Technometric, 37, 436-445. Rios Insua, D., Ruggeri, F. and Vidakovic, B. (1995), Some results on posterior regret Gamma- Minimax estimation, Statist. Decis., 13, 315-331. Royden, H. L. (1963), Real analysis, Macmillan, New York. Rudin, W. (1964), Principles of mathematical
analysis, McGrow-Hill, New York. Singh, R., Singh, S.K. and Singh, G.P. (2008), Bayes estimator of generalized exponential parameters under LINEX loss function using LINDLEY’S approximation, Data Science Journal, 7, no.5, 65-75