تحلیل بیزی در خانواده توزیع های نمایی تعمیم یافته

نوع مقاله : اصیل

نویسندگان

گروه آمار، دانشگاه تهران

چکیده

در این مقاله مینیماکس بودن برآوردگر بیزی تعمیم یافته پارامتر شکل توزیع نمایی تعمیم یافته را تحت تابع زیان مربع خطای وزنی مورد بررسی قرار میدهیم. یک روش متعارف در تحلیل بیزی زمانی که اختلاف نظر در مورد توزیع پیشین وجود دارد، انتخاب یک کلاس از توزیع های پیشین و دستیابی به تصمیم بهینه در آن کلاس است که به روش بیزی استوار معروف است. در این راستا برآوردگر تأسف پسین گاما مینیماکس را برای خانواده توزیعهای نمایی تعمیم یافته تحت تابع زیان مربع خطای وزنی به دست میآوریم.

کلیدواژه‌ها


عنوان مقاله [English]

Bayesian Inferences in Generalized Exponential Distribution

نویسندگان [English]

  • Sediqeh Omidvar Shalmani
  • Ahmad Parsian
  • Ali Karimnejad
  • leila Golparvar
Department of Statistics, University of Tehran, Tehran, Iran
چکیده [English]

In this paper, we discuss minimaxity of Generalized Bayes estimator of the shape parameter of Generalized Exponential (GE) distribution under Weighted Square Error Loss (WSEL) function. A common approach to the prior uncertainty in Bayesian analysis is to choose a class of prior distributions and look for an optimal decision within this class. This is known as robust Bayesian methodology. We obtain Posterior Regret Gamma Minimax estimator of the shape parameter of GE distribution under WSEL function.

کلیدواژه‌ها [English]

  • Generalized Bayes Estimator
  • Generalized Exponential Distribution
  • Minimax estimator
  • Posterior Regret Gamma Minimax
Bain, L.J. and Engelhardt, M. (1991), Statistical analysis of reliability and life testing models- Theory and Methods, Marcel Dekker: New York. Berger, J.O. (1985), Statistical decision theory and Bayesian analysis, 2nd ed., Springer-Verlag: ., New York. Berto, B. and Ruggeri, F. (1992) Conditional G-Minimax actions under convex losses, Commun. Statist. Theor. Meth. , 21(4), 1051-1066. Boratynska, A. (2002),
Posterior regret G-Minimax estimation in a normal model with asymmetric loss function, Applications Mathematicae , 29, 7-13. Gupta, R.D. and Kundu, D. (1997), Generalized exponential distributions, Technical report, Dept of Math., Stat. and Comp. Sci., University of New Brusnwick, Saint-John, NB, Canada. Gupta, R.D. and Kundu, D. (2001), Generalized exponential distribution: different methods of
estimation, Journal of Statistical Computaion and Simulation, 69(4), 315-338. Gupta, R.D. and Kundu, D. (2008), Generalized exponential distribution: Bayesian Inferences, Computational Statistics and Data Analysis, 52(4), 1873-1883. Jafari Jozani, M. and Parsian, A. (2008), Posterior regret gamma- minimax and prediction with application on k-records data under entropy loss function, Commun. in Stat. Theory and Method, 37(14), 2202-2212. Lehmann, E.L, and Casella, G. (1998), Theory of point estimation, 2nd ed., Springer- Verlag, New York. Meczarski, M. and Zieliski, R. (1991), Stability of Bayesian estimator of Poisson mean under the inexactly specified Gamma prior, Statistics and Probability Letter, 12, 329-333. Mudholkar, G.S, Srivastava, D.K. and Freimer, M. (1995). The exponentiated Weibull family: a reanalysis
of the bus motor failure data, Technometric, 37, 436-445. Rios Insua, D., Ruggeri, F. and Vidakovic, B. (1995), Some results on posterior regret Gamma- Minimax estimation, Statist. Decis., 13, 315-331. Royden, H. L. (1963), Real analysis, Macmillan, New York. Rudin, W. (1964), Principles of mathematical
analysis, McGrow-Hill, New York. Singh, R., Singh, S.K. and Singh, G.P. (2008), Bayes estimator of generalized exponential parameters under LINEX loss function using LINDLEY’S approximation, Data Science Journal, 7, no.5, 65-75