اراﺋﻪ‌ی ﻣﺪل ﭼﻨﺪ ﻫﺪﻓﻪ ﻗﺎﺑﻞ اﻃﻤﯿﻨﺎن ﻣﮑﺎن ﯾﺎﺑﯽ-ﺗﺨﺼﯿﺺ ﺑﺮای ﺳﯿﺴﺘﻢﻫﺎی ﺗﺎﻣﯿﻦ ﺧﻮن ﺗﺤﺖ ﺷﺮاﯾﻂ اﺧﺘﻼل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی صنایع و سیستم‌ها، دانشگاه علم و فناوری مازندران

2 گروه ریاضی، دانشگاه علم و فناوری مازندران

3 دانشکده مهندسی صنایع، پردیس دانشکده های فنی، دانشگاه تهران

چکیده

در زمان وقوع بلایای طبیعی و انسان‌ساز، تامین برخی اقلام که ارتباط مستقیم بازندگی انسان‌ها دارند، از اهمیت بالایی برخوردارند. در جهان واقعی سیستم‌های عرضه با اختلالات بسیاری در تسهیلات خود روبه‌رو هستند و از کار افتادن تسهیلات منجر به عدم تامین به‌موقع می‌شود و اهمیت این موضوع در سیستم تامین خون بیشتر آشکار می‌شود. در این مقاله، مدلی چندهدفه برای مکان‌یابی تسهیلات موقت جهت جمع‌آوری خون و تخصیص اهداکنندگان خون به این مکان‌ها ارائه‌شده است. اهداف مدل شامل کمینه کردن بیشترین مقدار کمبود در مراکز خون در بدترین حالت وقوع اختلالات در تسهیلات و نیز کمینه کردن مجموع هزینه‌ها در بدترین حالت وقوع اختلالات در تسهیلات می‌باشد. جهت نشان دادن کاربردپذیری مدل پیشنهادی، مساله با روش محدودیت اپسیلون بر روی مثال عددی حل و تجزیه‌وتحلیل شده است

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Reliable multi-objective location-allocation model for blood supply systems under disruptions

نویسندگان [English]

  • Nastaran Kazemi 1
  • Zahra Baderi 2
  • Ali Bozorgi Amiri 3
1 Department of Industrial Engineering, Mazandaran University of Science and Technology
2 Department of Mathematics, Mazandaran University of Science and Technology
3 School of Industrial Engineering, College of Engineering, University of Tehran
چکیده [English]

In time of natural and man-made disasters, the supply of some commodities which are directly related to human life are very critical. In the real-world, supply systems are exposed to various disruptions in their facilities and these disruptions can essentially affect systems performance and can lead to shortage in the supply and importance of this subject is much more expressed in the blood supply case. In this paper, a multi–objective mathematical model is proposed for the collection of temporary blood facilities and allocation of blood donators to these places. The goals of the model are to minimize the maximum blood shortage in the blood bank and also to minimize the total cost in the worst case scenario in disruptions. In order to demonstrate the applicability of the proposed model, the epsilon constraint method is solved and analyzed on numerical examples.

کلیدواژه‌ها [English]

  • Blood supply systems
  • Location–allocation
  • Multi–objective optimization
  • Reliability
[1]   Parvaresh, F. Husseini, S. M. Golpayegany, S. H. & Karimi, B. (2014). Hub network design problem in the presence of disruptions, Journal of Intelligent Manufacturing, 25, 755-774.
[2]   Sha, Y. and Huang, J. (2012). The multi-period location-allocation problem of engineering emergency blood supply systems, Systems Engineering Procedia, 5, 21-28.‏
[3]   Sahin, G., Sural, H. and Meral, S. (2007). Locational analysis for regionalization of Turkish Red Crescent blood services, Computers & Operations Research, 34, 692-704.
[4]   Cetin, E. and Sarul, L.S. (2009). A Blood Bank Location Model: A Multi-objective Approach, European Journal of Pure and Applied Mathematics, 2, 112-124.        
[5]   Nagurney, A. and Masoumi, A.H. (2012). Supply Chain Network Design of a Sustainable Blood Banking System, Sustainable Supply Chains. Springer New York, 174, 49-72.
[6]   Arvan, M. Tavakkoli-Moghaddam, R. & Abdollahi, M. (2015). Designing a bi-objective and multi-product supply chain network for the supply of blood, Uncertain Supply Chain Management, 3, 57-68.‏
[7] Shariff, S.R., Moin, N.H. and Omar, M. (2012). Location allocation modeling for healthcare facility planning in Malaysia, Computers & Industrial Engineering, 62, 1000-1010.‏
[8]   Araz, C., Selim, H. and Ozkarahan I. (2007). A fuzzy multi-objective covering-based vehicle location model for emergency services, Computers & Operations Research, 34, 705–726.
[9]   Syam, S.S. and Cote, M. J. (2010). A location–allocation model for service providers with application to not-for-profit health care organizations, Omega, 38, 157-166.
[10]  Doyen, A., Aras, N. and Barbarosoglu, G. (2012). A two-echelon stochastic facility location model for humanitarian relief logistics, Optimization Letter, 6, 1123-1145.
[11]  Conbalat, M.S. and Massow, M.V. (2012). Locating emergency facilities with random demand for risk minimization, Expert Systems with Applications, 38, 10099-10106.
[12]  Bozorgi-Amiri, A., Jabalameli, M.S. and Al-e-Hashem, S.M. (2013). A multi-objective robust stochastic programming model for disaster relief logistics under uncertainty, OR spectrum, 35, 905-933.‏
[13]  Drezner, Z. (1978). Heuristic solution methods for two location problems with unreliable facilities, Journal of the Operational Research Society, 38, 509–514.
[14]  Snyder, L.V. and Daskin, M.S. (2005). Reliability models for facility location: The expected failure cost case, Transportation Science, 39, 400–416.
[15]     Berman, O., Krass, D. and Menezes, M.B.C. (2007). Facility reliability issues in network p-median problems: Strategic centralization and co-location effects, Operations Research, 55, 332–350.
[16]     Berman, O., Drezner, T., Drezner, Z.and Wesolowsky, G.O. (2009). A defensive maximal covering problem on a network, International Transaction in Operational Research, 16, 69–86.
[17]     Hong, J., Xie, Y. and Jeong, K. (2012). Development and evaluation of an integrated emergency response facility location model, Journal of Industrial Engineering and Management, 5, 4–21.
[18]     Losada, C., Scaparra, M.P. and O’Hanley, J.R. (2012). Optimizing system resilience: A facility protection model with recovery time, European Journal of Operational Research, 217, 519–530.
[19]     Liberatore, F., Scaparra, M.P. and Daskin, M.S. (2012). Hedging against disruptions with ripple effects in location analysis, Omega, 40, 21– 30.
[20]     An, Y., Zeng, B., Zhang, Y., and Zhao, L. (2014). Reliable p-median facility location problem: two-stage robust models and algorithms. Transportation Research Part B: Methodological, 64, 54-72.‏
[21]     Jabbarzadeh, A., Fahimnia, B., and Seuring, S. (2014). Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application, Transportation Research Part E: Logistics and Transportation Review, 70, 225-244.‏
[22]           Romero, C., Tamiz, M. and Jones, D.F. (1998). Goal programming, compromise programming and reference point method formulations: linkages and utility interpretations, Journal of Operational Research Society, 49, 986–991.
[23]            Ehrgott, M. and Gandibleux, X. (2002). Multi-objective combinatorial optimization theory, methodology and applications. In multiple criteria optimization: State of the art annotated bibliographic surveys, Kluwer Academic Publisher, Boston, MA, 369–444.