[1] Mardia, K. V. (1972). Statistics of directional data, Academic Press, London.
[2] Mardia, K. V. and Jupp, P. E. (2000). Directional statistics, Wiley, Chichester.
[3] Jammalamadaka, S. R. and SenGupta, A. (2001). Topics in Circular Statistics, World Scientific, New Jersey.
[4] Azzalini, A. (1985). A Class of distributions which includes the normal ones, Scandinavian Journal of Statistics, 12, 171-178.
[5] Pewsey, A. (2000). Problems of inference for Azzalini's skew-normal distribution, Journal of Applied Statistics, 27, 859-870.
[6] Pewsey, A. (2000). The Wrapped skew-normal distribution on the circle, Communications in Statistics Theory and Methods, 29, 2459-2472.
[7] Pewsey, A. (2006). Modelling asymmetrically distributed circular data using the wrapped skew-normal distribution, Environmental and Ecological Statistics, 13, 257-269.
[8] Hernández-Sánchez, E., and Scarpa, B. (2012). A Wrapped flexible generalized skew-normal model for a bimodal circular distribution of wind directions. Chil. J. Statist, 3, 131-143.
[9] Gatto, R., and Jammalamadaka, S. R. (2007). The Generalized von Mises distribution, Statistical Methodology, 4, 341-353.
[10] Gatto, R. (2008). Some computational aspects of the generalized von Mises distribution, Statistics and Computing, 18, 321-331.
[11] Umbach, D., and Jammalamadaka, S. R. (2009). Building asymmetry into circular distributions, Statistics and Probability Letters, 79, 659-663.
[12] Abe, T., and Pewsey, A. (2011). Sine-Skewed circular distributions, Statistical Papers, 52, 683-707.
[13] نجیبی، س. م؛ و گلعلیزاده، م. (۱۳۸۹). بررسی آماری زوایای جهت وزش باد، نشریه ندا، سال هشتم، شماره دوم، 49-42.