Probabilistic Modeling of Wind Direction Data Related to Meteorological Stations of Kurdistan Province Using Skew Circular Distributions

Document Type : Original Paper


Department of Statistics, University of Tarbiat Modares


In studying some phenomena, the researchers are usually encountered with data that are not Euclidean in nature. To investigate the properties of these data, it is required to use some new statistical tools. Statistical methods to analysis these typical data are called non-linear statistics. Circular statistics is an example of this field. After explaining some circular distributions that are able to model skew circular data, probabilistic modeling of wind direction data related to meteorological stations of Kurdistan province is studied in this paper.


Main Subjects

[1] Mardia, K. V. (1972). Statistics of directional data, Academic Press, London.
[2] Mardia, K. V. and Jupp, P. E. (2000). Directional statistics, Wiley, Chichester.
[3] Jammalamadaka, S. R. and SenGupta, A. (2001). Topics in Circular Statistics, World Scientific, New Jersey.
[4] Azzalini, A. (1985). A Class of distributions which includes the normal ones, Scandinavian Journal of Statistics12, 171-178.
[5] Pewsey, A. (2000). Problems of inference for Azzalini's skew-normal distribution, Journal of Applied Statistics27, 859-870.
[6] Pewsey, A. (2000). The Wrapped skew-normal distribution on the circle, Communications in Statistics Theory and Methods29, 2459-2472.
[7] Pewsey, A. (2006). Modelling asymmetrically distributed circular data using the wrapped skew-normal distribution, Environmental and Ecological Statistics13, 257-269.
[8] Hernández-Sánchez, E., and Scarpa, B. (2012). A Wrapped flexible generalized skew-normal model for a bimodal circular distribution of wind directions. Chil. J. Statist3, 131-143.
[9] Gatto, R., and Jammalamadaka, S. R. (2007). The Generalized von Mises distribution, Statistical Methodology4, 341-353.
[10] Gatto, R. (2008). Some computational aspects of the generalized von Mises distribution, Statistics and Computing18, 321-331.
[11] Umbach, D., and Jammalamadaka, S. R. (2009). Building asymmetry into circular distributions, Statistics and Probability Letters79, 659-663.
[12] Abe, T., and Pewsey, A. (2011). Sine-Skewed circular distributions, Statistical Papers52, 683-707.
[13] نجیبی، س. م؛ و گل‌علی‌زاده، م. (۱۳۸۹). بررسی آماری زوایای جهت وزش باد، نشریه ندا، سال هشتم، شماره دوم، 49-42.
  • Receive Date: 17 April 2015
  • Revise Date: 10 October 2015
  • Accept Date: 16 December 2015
  • First Publish Date: 16 December 2015