[1]
Laajala, T.D.,
Corander, J.,
Saarinen, N.M.,
Mäkelä, K.,
Savolainen, S.,
Suominen, M.I.,
Alhoniemi, E.,
Mäkelä, S.,
Poutanen, M. and
Aittokallio, T. (2012). Improved statistical modeling of tumor growth and treatment effect in preclinical animal studies with highly heterogeneous responses in vivo,
Clinical Cancer Research, 18, 4385-4396.
[2] Benzekry, S., Lamont, C., Beheshti, A., Tracz, A., Ebos, J., Hlatky, L. and Hahnfeldt, P. (2014). Classical mathematical models for description and prediction of experimental tumor growth, PLOS Computational Biology, 10, doi: 10.1371/journal.pcbi.1003800
[3] Burgess, P. K.,
Murray, J.D. and
Alvord, E.C J.R. (1997). The interaction of growth rates and diffusion coefficients in a three dimensional mathematical model of gliomas,
Journal of Neuropathology and Experimental Neurology, 56, 704-713.
[4] Moyo, S. and Leach, P. G. L. (2004). Symmetry methods applied to a mathematical model of a tumor of the brain, Proceedingsof Institute of Mathematics of NAS of Ukraine, 50, 204-210.
[7] Iomin, A. (2005). Super diffusion of cancer on a comb structure, Journal of Physics, Conference Series, 7, 57-67.
[8] Iyiola, O.S. and Zaman, F.D. (2014). A fractional diffusion equation model for cancer tumor, AIP Advances, 4,107121; doi: 10.1063/1.4898331.
[9] Hesameddini, E. and Latifizadeh, H. (2009). Reconstruction of variational iteration algorithms using the Laplace transform, International Journal of Nonlinear Science and Numerical Simulation, 10, 1377-1382.
[10] Akrami, M. H. and Erjaee, G. H. (2015). Examples of analytical solutions by means of Mittag-Leffler function for fractional Black - Scholes option pricing equation, Fractional Calculus and Applied Analysis, 18, 38-47.
[11] Hernandez, R.T. Ramirez, V.R., Iglesias-Silva, G.A. and Diwekar, U.M. (2014). A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: Fractional models for biological reactions, Chemical Engineering Science, 17, 217-228.
[12] Machado, J. A. T. (2015). Fractional order description of DNA, Applied Mathematical Modelling, 39, 4095-4102.
[13] Machado, J. A. T.,
Costa,
A.C. and
Quelhasc, M.D. ( 2011). Fractional dynamics in DNA
, Communications in Nonlinear Science and Numerical Simulation, 16, 2963-2969.
[14] Kolwankar, K. M. (2013). Local fractional calculus: a review, arXiv preprint arXiv, 1307.0739.
[15] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, New York.
[16] Sayevand, K. and Pichaghchi, K. (2015). A novel computational framework to approximate analytical solution of nonlinear fractional elastic beam equation, Scienti Iranica, Sharif University of Technology, In press.
[17] Sayevand, K. (2015). Analytical treatment of Volterra–integro differential equations of fractional order, Applied Mathematical Modelling, 39, 4330 - 4336.
[18] Sayevand, K. and Pichaghchi, K. (2015). Successive approximation: A survey on stable manifold of fractional differential systems, Fractional Calculus and Applied Analysis, 18, 621-641.