A fresh view on the interaction of growth rates and diffusion coefficients of cancer tumor models

Document Type : Original Paper


Faculty member


In this paper, the growth of cancer tumor cells as a prototype problems in real life will be discussed. Several different cases of the net killing rate are taken into consideration. These patterns are including the cases where net killing rate of the cancer cells are dependent on the concentration of the cells. Our proposed approach which is introduced for these observation is based on a modification of fractional Laplace iterative transformations scheme. The fractional derivative is in the local fractional sense. The obtained results enables us to give some recommendations on the effects of modeling of the cancer tumor.


Main Subjects

[1] Laajala, T.D., Corander, J., Saarinen, N.M., Mäkelä, K., Savolainen, S., Suominen, M.I., Alhoniemi, E., Mäkelä, S., Poutanen, M. and Aittokallio, T. (2012). Improved statistical modeling of tumor growth and treatment effect in preclinical animal studies with highly heterogeneous responses in vivo, Clinical Cancer Research, 18, 4385-4396.
[2] Benzekry, S., Lamont, C., Beheshti, A., Tracz, A., Ebos, J., Hlatky, L. and Hahnfeldt, P. (2014). Classical mathematical models for description and prediction of experimental tumor growth, PLOS Computational Biology, 10, doi: 10.1371/journal.pcbi.1003800
[3] Burgess, P. K., Murray, J.D. and Alvord, E.C J.R. (1997). The interaction of growth rates and diffusion coefficients in a three dimensional mathematical model of gliomas, Journal of Neuropathology and Experimental Neurology, 56, 704-713.
[4] Moyo, S. and Leach, P. G. L. (2004). Symmetry methods applied to a mathematical model of a tumor of the brain, Proceedingsof Institute of Mathematics of NAS of Ukraine, 50, 204-210.
[5] Ali, S. M.,  Bokhari, A. H., Yousuf, M. and  Zaman, F. D. (2014). A spherically symmetric model for the tumor growth, Journal of Applied Mathematics, doi.org/10.1155/2014/726837.
[6] Bokhari, A. H,  Karab, A.H. and Zamana, F.D. (2009). On the solutions and conservation laws of the model for tumor growth in the brain, Journal of Mathematical Analysis and Applications, 350, 256-261.
 [7] Iomin, A. (2005). Super diffusion of cancer on a comb structure, Journal of Physics, Conference Series, 7, 57-67.
[8] Iyiola, O.S. and Zaman, F.D. (2014). A fractional diffusion equation model for cancer tumor, AIP Advances, 4,107121; doi: 10.1063/1.4898331.
[9] Hesameddini, E. and Latifizadeh, H. (2009). Reconstruction of variational iteration algorithms using the Laplace transform, International Journal of Nonlinear Science and Numerical Simulation, 10, 1377-1382.
[10] Akrami, M. H. and Erjaee, G. H. (2015). Examples of analytical solutions by means of Mittag-Leffler function for fractional Black - Scholes option pricing equation, Fractional Calculus and Applied Analysis, 18, 38-47.
[11] Hernandez, R.T. Ramirez, V.R., Iglesias-Silva, G.A. and Diwekar, U.M. (2014). A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: Fractional models for biological reactions, Chemical Engineering Science, 17, 217-228.
[12] Machado, J. A. T. (2015). Fractional order description of DNA, Applied Mathematical Modelling, 39, 4095-4102.
[13] Machado, J. A. T., Costa, A.C. and Quelhasc, M.D. ( 2011). Fractional dynamics in DNA, Communications in Nonlinear Science and Numerical Simulation, 16, 2963-2969.
[14] Kolwankar, K. M. (2013). Local fractional calculus: a review, arXiv preprint arXiv, 1307.0739.
[15] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, New York.
[16] Sayevand, K. and Pichaghchi, K. (2015). A novel computational framework to approximate analytical solution of nonlinear fractional elastic beam equation, Scienti Iranica, Sharif University of Technology, In press.
[17] Sayevand, K. (2015). Analytical treatment of Volterra–integro differential equations of fractional order, Applied Mathematical Modelling, 39, 4330 - 4336.
[18] Sayevand, K. and Pichaghchi, K. (2015). Successive approximation: A survey on stable manifold of fractional differential systems, Fractional Calculus and Applied Analysis, 18, 621-641.