براوردگر پیش آزمون در مدل نمایی دو پارامتری تحت سانسور فزاینده نوع دوم

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه آمار، دانشگاه مازندران

چکیده

در این ‎‎مقاله، برآوردگرهای پیش‌آزمون برای پارامترهای مکان و قیاس مدل‌ نمایی دو پارامتری براساس نمونه‌های سانسور شده‌ی فزاینده ‎‎نوع II‎‎ ارائه می‌شوند. مقادیر اریبی و میانگین مربعات خطای برآوردگرهای پیشنهادی محاسبه می‌شوند. نشان داده می‌شود که برآوردگرهای پیشنهادی در همسایگی فرض صفر بهتر از برآوردگرهای کلاسیک متناظر عمل می‌کنند. همچنین دامنه‌ی مقادیری از پارامترها که به ازای آنها‏، برآوردگرهای پیشنهادی بهتر از برآوردگرهای کلاسیک عمل می‌کنند بر حسب اندازه‌‌های نمونه‌ای وسطوح معناداری مختلف مشخص می شوند‎. در پایان یک مثال عددی برای تشریح برآوردگرهای پیشنهادی مورد بحث قرار می گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Preliminary Test Estimation in Two-parameter Exponential Model Under Progressively Type-II Censoring

نویسندگان [English]

  • Akbar Asgharzadeh
  • Mohammad Sharifi
چکیده [English]

In this paper, the preliminary test estimators for the location and scale parameters of the two-parameter
exponential model are presented based on progressively Type II censored samples. The biases and mean squared
errors of the proposed estimators are given. It is shown that the proposed estimators dominate the corresponding
classical estimators in the neighborhood of null hypothesis. We also provide the range of the parameters for which
the proposed estimators dominate the corresponding classical estimators for different sample sizes and level of
significance. Finally, a numerical example is given to illustrate the results.

کلیدواژه‌ها [English]

  • Two-Parameter Exponential Model
  • Preliminary Test ٍٍEstimation
  • Progressively Type-II Censoring
  • Relative Efficiency
[1] Saleh‎, ‎A.K.Md.E‎. ‎(2006)‎. Theory of Preliminary Test and Stein-Type Estimations with Applications. ‎Wiley‎, ‎New York‎.
[2] Bancroft‎, ‎T.A. (1944)‎. ‎On biases in estimation due to use of preliminary tests of significance‎. Annals of Mathematical Statistics, 15‎,‎ ‎190-204‎.
[3] Han‎, ‎C.P. ‎and ‎Bancroft‎, ‎T.A‎. ‎(1968). ‎On pooling means when variance is unknown‎. Journal of the American‎ Statistical Association‎, 63‎,‎ ‎1333-1342‎.
[4] Judge‎, ‎G.G.‎and  ‎Bock‎, ‎M.E‎. ‎(1978)‎. The Statistical Implications of Pre-Test and Stein-Rule‎ Estimators in Econometrics. North-Holland‎, ‎Amsterdam‎.
[5] Kibria, ‎B.M.G. and ‎Saleh‎, ‎A.K.Md.E‎. ‎(1993)‎. ‎Performance of shrinkage Preliminary test estimator‎ in regression analysis‎. ‎ Jahangirnagar Rev A, 17‎, ‎133-148‎.
[6] Saleh‎, ‎A.K.Md.E.‎ and ‎Kibria‎, ‎B.M‎.G. ‎(1993)‎. ‎Performances of some new preliminary test‎ ridge regression estimators and their properties‎. Communications in Statistics-Theory and‎ Methods, 22‎, 2747-2764‎.
[7] Benda‎, ‎N‎. ‎(1996)‎. ‎Pre-test estimation and design in the linear model. Journal of Statistical Planning and Inference, 52‎, ‎‎225-240‎.
[8] Chiou‎, ‎P.‎and ‎Han‎, ‎C.P‎. ‎(1999)‎. ‎Conditional interval estimation of the ratio of variance components‎ following rejection of a pre-test‎. Journal of Statistical Computation and Simulation, 63‎, ‎105-119‎.
[9] Han‎, ‎C.P‎. ‎(2002)‎. ‎Influential observations in a preliminary test estimation of the mean‎. PakistanJournal of Statistics, 18‎, ‎321-333‎.
[10] Shanubhogue‎, ‎A. ‎and ‎Jiheel‎, ‎A.K‎. ‎(2013)‎. ‎Bayes pre-test estimation of scale parameter of Weibull distribution under different loss functions using progressive type-II censored‎ sample‎. Journal of Reliability and Statistical Studies, 6, ‎‎101-113.
[11] Arashi‎, ‎M.‎, ‎Kibria‎, ‎B.M.‎G, ‎Norouzirad‎, ‎M.‎ ‎and Nadarajah‎, ‎S‎. ‎(2014)‎. ‎Improved preliminary test ‎and Stein-rule Liu estimators for the ill-conditioned elliptical linear regression model. Journal of‎ Multivariate Analysis‎, 126‎, ‎ ‎53-74.
[12] Singh‎, ‎B.K‎. ‎(2015)‎. ‎Preliminary test estimation and shrinkage preliminary test estimation in‎ normal and negative exponential distribution Using LINEX loss function‎. International Journal of‎ Soft Computing‎, ‎Mathematics and Control‎, 4‎, ‎49-66.
[13] Baklizi‎, ‎A‎. ‎(2005)‎. ‎Preliminary test estimation in the two parameter exponential distribution‎ with time censored data. Applied Mathematics and Computation, 163‎, ‎639-643‎.
[14] Kibria‎,‎B.M.G.and ‎Saleh‎, ‎A.K.Md.E‎. ‎(2010)‎. ‎Preliminary test estimation of the parameters of‎ exponential and Pareto distributions for censored samples. Statistical Papers‎,51‎,‎ ‎757-773‎.
[15] Baklizi‎, ‎A‎. ‎(2008)‎. ‎Preliminay test estimation in the two parameter exponential distribution‎ based on record values. Journal of Applied Statistical Science‎, 18‎, ‎387-393‎.
[16] Zakerzadeh‎, ‎H.‎ and ‎Karimi‎, ‎M‎. ‎(2014)‎. ‎Minimax regret estimation of exponential distribution‎ based on record values under weighted square error loss function‎. Journal of Mathematical‎ Extension‎, ‎8‎,‎ ‎1-8‎.
[17] Mirfarah‎, ‎E.‎and ‎Ahmadi‎, ‎J‎. ‎(2014)‎. ‎Pitman closeness of preliminary test and some classical‎ estimators based on records from two-parameter exponential distribution. Journal of Statistical‎ Research of Iran‎, ‎11‎, ‎73-96.
[18] Balakrishnan‎, ‎N.‎and Aggarwala, R‎. ‎(2000)‎. Progressive Censoring‎: ‎Theory‎, ‎Methods and‎ Applications‎. ‎Berkhauser‎, ‎Boston‎.
[19] Lawless‎, ‎J.F‎. ‎(1982)‎. Statistical Models and Methods for Lifetime Data‎. ‎Wiley‎, ‎New York‎.
[20] Wu‎, ‎S.F‎. ‎(2010)‎. ‎Interval estimation for the two parameter exponential distribution under progressive‎ censoring. Quality and Quantity‎, 34‎, ‎‎181-189‎.