[1] Saleh, A.K.Md.E. (2006). Theory of Preliminary Test and Stein-Type Estimations with Applications. Wiley, New York.
[2] Bancroft, T.A. (1944). On biases in estimation due to use of preliminary tests of significance. Annals of Mathematical Statistics, 15, 190-204.
[3] Han, C.P. and Bancroft, T.A. (1968). On pooling means when variance is unknown. Journal of the American Statistical Association, 63, 1333-1342.
[4] Judge, G.G.and Bock, M.E. (1978). The Statistical Implications of Pre-Test and Stein-Rule Estimators in Econometrics. North-Holland, Amsterdam.
[5] Kibria, B.M.G. and Saleh, A.K.Md.E. (1993). Performance of shrinkage Preliminary test estimator in regression analysis. Jahangirnagar Rev A, 17, 133-148.
[6] Saleh, A.K.Md.E. and Kibria, B.M.G. (1993). Performances of some new preliminary test ridge regression estimators and their properties. Communications in Statistics-Theory and Methods, 22, 2747-2764.
[7] Benda, N. (1996). Pre-test estimation and design in the linear model. Journal of Statistical Planning and Inference, 52, 225-240.
[8] Chiou, P.and Han, C.P. (1999). Conditional interval estimation of the ratio of variance components following rejection of a pre-test. Journal of Statistical Computation and Simulation, 63, 105-119.
[9] Han, C.P. (2002). Influential observations in a preliminary test estimation of the mean. Pakistan Journal of Statistics, 18, 321-333.
[10] Shanubhogue, A. and Jiheel, A.K. (2013). Bayes pre-test estimation of scale parameter of Weibull distribution under different loss functions using progressive type-II censored sample. Journal of Reliability and Statistical Studies, 6, 101-113.
[11] Arashi, M., Kibria, B.M.G, Norouzirad, M. and Nadarajah, S. (2014). Improved preliminary test and Stein-rule Liu estimators for the ill-conditioned elliptical linear regression model. Journal of Multivariate Analysis, 126, 53-74.
[12] Singh, B.K. (2015). Preliminary test estimation and shrinkage preliminary test estimation in normal and negative exponential distribution Using LINEX loss function. International Journal of Soft Computing, Mathematics and Control, 4, 49-66.
[13] Baklizi, A. (2005). Preliminary test estimation in the two parameter exponential distribution with time censored data. Applied Mathematics and Computation, 163, 639-643.
[14] Kibria,B.M.G.and Saleh, A.K.Md.E. (2010). Preliminary test estimation of the parameters of exponential and Pareto distributions for censored samples. Statistical Papers, 51, 757-773.
[15] Baklizi, A. (2008). Preliminay test estimation in the two parameter exponential distribution based on record values. Journal of Applied Statistical Science, 18, 387-393.
[16] Zakerzadeh, H. and Karimi, M. (2014). Minimax regret estimation of exponential distribution based on record values under weighted square error loss function. Journal of Mathematical Extension, 8, 1-8.
[17] Mirfarah, E.and Ahmadi, J. (2014). Pitman closeness of preliminary test and some classical estimators based on records from two-parameter exponential distribution. Journal of Statistical Research of Iran, 11, 73-96.
[18] Balakrishnan, N.and Aggarwala, R. (2000). Progressive Censoring: Theory, Methods and Applications. Berkhauser, Boston.
[19] Lawless, J.F. (1982). Statistical Models and Methods for Lifetime Data. Wiley, New York.
[20] Wu, S.F. (2010). Interval estimation for the two parameter exponential distribution under progressive censoring. Quality and Quantity, 34, 181-189.