[1] Tripathi, A., Naresh, R. and Sharma, D. (2007). Modeling the effect of screening of unaware invectives on the spread of HIV infection, Science Direct, Applied Mathematics and Computation, 184, 1053-1068.
[2] Brannstrom, J., Akerlund, B., Arneborn M., Blaxhult, A. and Giesecke, J. (2005). Unaware infection in HIV cases, Int. J. ZSTD AIDS, 16, 702–706.
[3] Centers for Disease Control and Prevention, Prevalence and awareness of HIV infection among men who have sex with men –21 cities, United States 2008, (2010). Morbidity and Mortality weekly report, 59, No. 37.
[4] Roy, P.K. (2015). Mathematical models for therapeutic approaches to control HIV disease transmission, Singapore, Springer.
[5] Anderson, R.M., Medly, G.F., May, R.M. and Johnson, A.M. (1986). A preliminary study of the transmission dynamics of the Human Immunodeficiency Virus (HIV), the causative agent of AIDS,
IMA Journal of Mathematics Applied in Medicine and Biology, 3, 229–263.
[6] Nikolaos, I.S., Dietz, K. and Schenzle, D. (1997). Analysis of a model for the pathogenesis of AIDS, Mathematical Biosciences, 145, 27–46.
[7] Okosun, K.O., Makinde, O.D. and Takaidza, I. (2013). Impact of optimal control on the treatment of HIV/AIDS and screening of unaware infectives, Applied Mathematical Modelling, 37, 3802–3820.
[8] Naresh, R. and Tripathi, A. (2005). Modeling and analysis of HIV-TB co-infection in a variable size population, Mathematical Modelling and Analysis, 10, 275–286.
[9] Bhunu, C.P. and Mushayabasa, S. (2013). Modelling the transmission dynamics of HIV/AIDS and hepatitis C virus co-infection, HIV & AIDS Review, 12, 37-42.
[10] Shah, N. H. and Gupta., J. (2014). Modelling of HIV-TB Co-infection Transmission Dynamics, American Journal of Epidemiology and Infectious Disease, 2, 1-7.
[11] Silva, C.J., and Torres, D.F.M. (2015). A TB-HIV/AIDS coinfection model and optimal control treatment, Discrete and continuous dynamical systems, 35, 4639 -4663.
[12] Joshi, H. R. (2002). Optimal control of an HIV immunology model, Optimal Control Applications and Methods, 23, 199–213.
[13] Yusuf, T.T. and Benya, F. (2012). Optimal strategy for controlling the spread of HIV/AIDS disease: a case study of South Africa, Journal of Biological Dynamics, 6, 475–494.
[14] Akinboro, F.S., Alao, S., Akinpelu, F.O. and Gbodamosi, B. (2014). Optimal Control of Drug in an HIV Immunological Model, IOSR Journal of Mathematics, 19, 98-105.
[15] Basak, U.S., Datta, B.K., and Ghose, P.K. (2015).Mathematical Analysis of an HIV/AIDS Epidemic Model, American Journal of Mathematics and Statistics, 5, 253-258.
[16] Roy, P.K., Saha, S., and Al Basir, F. (2015), Effect of awareness programs in controlling the disease HIV/AIDS: An optimal control theoretic approach, Difference Equations, 1, 1-18.
[17] Shabani, I., Massawe, E.S. and Makinde, O.D. (2011), Modelling the effect of screening on the spread of HIV infection in a population with variable inflow of infective immigrants, Scientific Research and Essay, 6, 4397-4405.
[18] Driessche, V.P. and Watmough, J. (2002), Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180, 29–48.
[19] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishchenko, E.F. (1962). The Mathematical Theory of Optimal Processes, New York: Wiley.