[1].Zadeh, L.A. (1965). Fuzzy sets, Information and Control, 8, 338-353.
[2].Tanaka, H. Uejima, S. Asia, K. (1982). Linear regression analysis with fuzzy model, IEEE Transactions on Systems, Man and Cybernetics, 12, 903-907.
[3]. Diamond, P. (1988). Fuzzy least squares, Information Sciences, 46, 141-157.
[4].Farnoosh, R. Ghasemian, J. and Solaymani fard, O. (2012). A modification on ridge estimation for fuzzy nonparametric regression, Iranian Journal of Fuzzy System, 9, 75-88.
[5].Hong, D.H. Song, J.-K. Young, H. (2001). Fuzzy least-squares linear regression analysis using shape preserving operations, Information Sciences, 138, 185-193.
[6].Razzaghnia, T. Danesh S. and Maleki, A. (2011). Hybrid fuzzy regression with trapezoidal fuzzy data, Proc. SPIE 8349, 834921.
[7].Razzaghnia, T. Danesh, S. (2015). Nonparametric Regression with Trapezoidal Fuzzy Data, International Journal on Recent and Innovation Trends in Computing and Communication (IJRITCC), 3826 – 3831.
[8].Wang, N. Zhang, W. X. Mei, C. L. (2007). Fuzzy nonparametric regression based on local linear smoothing technique, Information Sciences, 177, 3882-3900.
[9].Tanaka, H. Ishibushi, H. (1991). Identification of possibilistic linear systems by quadratic membership functions of fuzzy parameters, Fuzzy Sets and Systems, 41, 145-160.
[10].Tanaka, H. Lee, H. (1998). Interval regression analysis by quadratic programming approach, IEEE Transactions on Fuzzy Systems, 6, 473-481.
[11].Cheng, C.-B. Lee, E. S. (1999). Nonparametric fuzzy regression k-NN and kernel smoothing techniques, Computers and Mathematics with Applications, 38, 239-251.
[12].Donoso, S. Marin, N. and Amparo, V. (2006). M. Quadratic programming models for fuzzy regression, International Conference on Mathematical and Statistical Modeling in Honor of Enrique Castillo.
[13].Razzaghnia, T. Pasha, E. (2009). A new mathematical programming approach in fuzzy linear regression models, J. Sci. A. U, 18, 50-59.
[14].Ishibuchi, H. Kwon, K. Tanaka, H. (1995). A learning algorithm of fuzzy neural networks with triangular fuzzy weights, Fuzzy Sets and Systems, 71, 277-293.
[15].Ishibuchi, H. Tanaka, H. (1992). Fuzzy regression analysis using neural networks, Fuzzy Sets and Systems, 50,257-265.
[16].Jang. J.S.R. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cyber, 23, 665-685.
[17].Cheng, C.-B. Lee, E. S. (1999). Applying Fuzzy Adoptive Network to Fuzzy Regression Analysis, Computers and Mathematics with Applications, 38,123-140.
[18].Dalkilic, T. E. Apaydin, T. (2009). A fuzzy adaptive network approach to parameter estimation in cases where independent variables come from an exponential distribution, Journal of Computational and Applied Mathematics, 233, 36-45.
[19].Dalkilic, T. E. Apaydin, T. (2014). Parameter Estimation by ANFIS in Cases Where Outputs are Non-Symmetric Fuzzy Numbers, International Journal of Applied Science and Technology, 92-103.
[20].Danesh, S. Farnoosh, R. Razzaghnia, T. (2016). Fuzzy nonparametric regression based on adaptive neuro fuzzy inference system, Neurocomputing, 173, 1450-1460.
[21].Jang, J.S.R. (1992). Self-learning fuzzy controllers based on temporal back-propagation, IEEE Transactions on Neural Network, 3, 714-723.
[22].Kim, B. and Bishu, R. R. (1998). Evaluation of fuzzy linear regression models by comparing membership functions, Fuzzy Sets and Systems, 100,343-351.
[23].Tanaka, H., Hayashi, I., Watada, J. (1989). Possibilistic linear regression analysis for fuzzy data. European Journal of Operational Research, 40, 389-396.