Ang, K.C. (2009). Analysis of a tumor growth model with MATLAB.
Mousavi, S.M., Gouya, M.M., Ramazani, R., Davanlou, M., Hajsadeghi, N. and Seddighi, Z. (2009). Cancer incidence and mortality in Iran. Annals of Oncology, 20, 556-563.
Rodrigues, D. (2007). CellCom - A Hybrid Cellular Automaton Model of Tumorous Tissue Formation and Growth. Report - Master program in Complexity Sciences (ISCTE/FCUL, Lisbon)
Ghaemi, M., Naderi, O. and Zabihinpour, Z. (2010). A novel method for simulating cancer growth. In Cellular Automata (pp. 142-148). Springer Berlin Heidelberg.
Altinok, A., Gonze, D., Lévi, F. and Goldbeter, A. (2011). An automaton model for the cell cycle. Interface focus, 1, 36-47.
Sabzpoushan, S.H. and Pourhasanzade, F. (2011). A cellular Automata-based Model for Simulating restitution Property in a Single Heart cell. Journal of medical signals and sensors, 1, 19.
Pourhasanzade, F. and Sabzpoushan, S.H. (2010). A new c
ellular automata model of cardiac action potential propagation based on summation of excited neighbors. World Academy of Science, Engineering and Technology, 44, 917-921
Pourhasanzade, F., Sabzpoushan, S.H., Alizadeh, A.M. and Esmati, E., (2017). An agent-based model of avascular tumor growth: Immune response tendency to prevent cancer development. Simulation