On the existence of solutions to a class of semilinear Schrödinger equations

Document Type : Original Paper

Authors

Department of Mathematics, Razi University, Kermanshah, Iran

Abstract

In this paper, we investigate the existence of a nontrivial weak solution for a class of quasilinear Schrödinger equations in the Sobolev space . First, we use a change of variables to obtain a well defined energy functional on . Then we find a  manifold which is a natural constraint, and we prove that the restriction of the energy functional to this manifold attains its infimum. Finally, we show that this infimum point is a nontrivial weak solution for the equation.

Keywords

Main Subjects


 Kurihara, S. (1981). Large amplitude quasi-solitons in superfluid films, J. Phys. Soc. Jpn.,
Brizhik, L., Eremko, A., Piette, B. and Zakrzewski, W.J. (2003). Static solutions of a D-dimensional modified nonlinear Schrödinger equation, Nonlinearity16, 1481-1497.
 Hass, R.W. (1980).  A general method for the solution of nonlinear soliton and kink Schrödinger equation, Z. Phys., 37, 83-87.
 Aires, J.F.L. and Souto, M.A.S. (2014). Existence of solutions for quasilinear Schrödinger equation with vanishing potentials, J.Math.Anal.Appl., 416, 924-946.        
                        
 Liu, J., Wang, Y. and Wang, Z. (2004). Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations29, 879-901.   
Liu, X., Liu, J. and Wang, Z.Q. (2013). Ground states for quasilinear Schrödinger equations with critical growth, Calc. Var., 46, 641-669.
Fang, X.D. and Szulkin. (2013). A. Multiple solutions for a quasilinear Schrödinger equation, J. Differential Equation254, 2015-2032.    
Bezerra do O, J.M., Miyagaki, O.H. and Soares, S.H.M. (2010). Soliton solutions for quasilinear Schrödinger equation with Critical growth, J. Differential Equation248, 722-744.