[1] Huber, P. and Ronchetti, E.M. (2009). Robust Statistics, 2ed. Wiley, Hoboken, NJ.
[2] Rousseeuw, P.J. and Leroy, A.M. (1987). Robust Regression and Outlier Detection, Wiley, Hoboken, NJ.
[3] Andersen, R. (2007). Modern Methods for Robust Regression, Sage: Thousand Oaks, CA.
[4] Roozbeh, M. (2016). Robust ridge estimator in restricted semi-parametric regression models, Journal Multivariate Analysis, 147, 127-144.
[5] D'Urso, P., Massari, R. and Santoro, A. (2011). Robust fuzzy regression analysis, Information Sciences, 181, 4154-4174.
[6] Chachi, J. and Roozbeh, M. (2017). A fuzzy robust regression approach applied to bedload transport data, Communications in Statistics-Simulation and Computation, 46, 1703-1714.
[7] Chachi, J., Taheri, S.M., Fattahi, S. and Hosseini Ravandi, S.A. (2017). Two robust fuzzy regression models and their applications to predict imperfections of cotton yarn, Journal of Textiles and Polymers, In Press.
[8] Arefi, M. and Taheri, S.M. (2015). Least squares regression based on Atanassov’s intuitionistic fuzzy inputs-outputs and Atanassov’s intuitionistic fuzzy parameters, IEEE Transactions on Fuzzy Systems, 23, 1142-1154.
[9] Ferraro, M.B., Coppi, R., Gonzalez-Rodriguez, G. and Colubi, A. (2010). A linear regression model for imprecise response, International Journal of Approximate Reasoning, 51, 759-770.
[10] Chachi, J. and Taheri, S.M. (2016). Multiple fuzzy regression model for fuzzy input-output data, Iranian Journal of Fuzzy Systems, 13, 63-78.
[11] Chachi, J., Taheri, S.M. and Arghami, N.R. (2014). A hybrid fuzzy regression model and its application in hydrology engineering, Applied Soft Computing, 25, 149-158.
[12] Chachi, J., Taheri, S.M. and Rezaei Pazhand, H. (2016). Suspended load estimation using L1-Fuzzy regression, L2-Fuzzy regression and MARS-Fuzzy regression models, Hydrological Sciences Journal, 61, 1489-1502.
[13] Coppi, R., D'Urso, P., Giordani, P. and Santoro, A. (2006). Least squares estimation of a linear regression model with LR fuzzy response, Computational Statistics and Data Analysis, 51, 267-286.
[14] Hung, W.L. and Yang, M.S. (2006). An omission approach for detecting outliers in fuzzy regressions models, Fuzzy Sets and Systems, 157, 3109-3122.
[15] Peters, G. (1994). Fuzzy linear regression with fuzzy intervals, Fuzzy Sets and Systems 63, 45-55.
[16] Zimmermann, H.J. (2001). Fuzzy Set Theory and Its Applications, 4th ed., Kluwer Nihoff, Boston.
[17] Chang, P.T. and Lee, S. (1994). Fuzzy linear regression with spreads unrestricted in sign, Computers and Mathematics with Applications, 28, 61-70.
[18] Fox, J. and Weisberg, S. (2011). An R Companion to Applied Regression. 2nd ed., Sage Publications: Thousand Oaks, CA.