Robust Programming Models for Design and Optimization of Microalgae-Based Biofuel Supply Chain Under Uncertainty

Document Type : Original Paper

Authors

Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

The sharp decline in oil resources and environmental pollutions are the most important motivations for the development of green fuels in Iran. Among the different raw materials used for the production of green fuels, microalgae is considered as one of the most important resources and have attracted a lot of attentions globally. In order to accelerate the development of this industry, it is essential to design an efficient microalgae-based biofuel supply chain. For this purpose, this paper proposes robust programming approaches for the design and optimization of the microalgae biofuel supply chain under uncertainty. The proposed supply chain optimization model is formulated based on two robust optimization approaches under different uncertainty sets. In a case study, the performance of the two robust supply chain design models is evaluated by considering the different degrees of conservatism level of decision makers. The results of the robust models and sensitivity analysis show that the developed supply chain model can be used for the development of microalgae biofuel in the future.

Keywords

Main Subjects


-       فهرست بهای اختصاصی تأسیسات نفت و گاز سال 1390
-        فهرست بهای واحد پایه رشته شبکه توزیع آب سال1393
 
[1] Yue, D., You, F., and Snyder, S. W. (2014). Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges. Computers & Chemical Engineering66, 36-56.
[2] Awudu, I., and Zhang, J. (2012). Uncertainties and sustainability concepts in biofuel supply chain management: A review. Renewable and Sustainable Energy Reviews16(2), 1359-1368.
 
[3] Sims, R. E., Mabee, W., Saddler, J. N., and Taylor, M. (2010). An overview of second generation biofuel technologies. Bioresour Technol101(6), 1570-1580.
[4] Mata, T. M., Martins, A. A., and Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews14(1), 217-232.
 
[5] An, H., Wilhelm, W. E., and Searcy, S. W. (2011). A mathematical model to design a lignocellulosic biofuel supply chain system with a case study based on a region in Central Texas. Bioresour Technol,102(17), 7860-7870.
[6] Awudu, I., and Zhang, J. (2013). Stochastic production planning for a biofuel supply chain under demand and price uncertainties. Applied Energy103, 189-196.
[7] Azadeh, A., Arani, H. V., and Dashti, H. (2014). A stochastic programming approach towards optimization of biofuel supply chain. Energy76, 513-525.
 
[8] Ekşioğlu, S. D., Acharya, A., Leightley, L. E., and Arora, S. (2009). Analyzing the design and management of biomass-to-biorefinery supply chain. Computers & Industrial Engineering57(4), 1342-1352.
[9] Osmani, A., and Zhang, J. (2014). Economic and environmental optimization of a large scale sustainable dual feedstock lignocellulosic-based bioethanol supply chain in a stochastic environment. Applied Energy114, 572-587.
[10] Pishvaee, M. S., Rabbani, M., and Torabi, S. A. (2011). A robust optimization approach to closed-loop supply chain network design under uncertainty. Applied Mathematical Modelling35(2), 637-649.
[11] Ben-Tal, A., and Nemirovski, A. (2000). Robust solutions of linear programming problems contaminated with uncertain data. Mathematical programming88(3), 411-424.
[12] Soyster, A. L. (1973). Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations Research,21(5), 1154-1157.
[13] Ben-Tal, A., Goryashko, A., Guslitzer, E., and Nemirovski, A. (2004). Adjustable robust solutions of uncertain linear programs. Mathematical programming99(2), 351-376.
[14] Verderame, P. M., and Floudas, C. A. (2010). Multisite planning under demand and transportation time uncertainty: Robust optimization and conditional value-at-risk frameworks. Industrial & Engineering Chemistry Research50(9), 4959-4982.
[15] Li, Z., Ding, R., and Floudas, C. A. (2011). A comparative theoretical and computational study on robust counterpart optimization: I. Robust linear optimization and robust mixed integer linear optimization. Industrial & Engineering Chemistry Research50(18), 10567-10603.
[16] Bertsimas, D., and Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35-53.
[17] Mohseni, S., and Pishvaee, M. S. (2016). A robust programming approach towards design and optimization of microalgae-based biofuel supply chain. Computers & Industrial Engineering, 100, 58-71.
[18] Lundquist, T. J., Woertz, I. C., Quinn, N., and Benemann, J. R. (2010). A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute1.
[19] Yang, J., Xu, M., Zhang, X., Hu, Q., Sommerfeld, M., and Chen, Y. (2011). Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol102(1), 159-165.
[20] Pate, R., Klise, G., and Wu, B. (2011). Resource demand implications for US algae biofuels production scale-up. Applied Energy88(10), 3377-3388.
[21] Béchet, Q., Shilton, A., and Guieysse, B. (2013). Modeling the effects of light and temperature on algae growth: State of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnology advances31(8), 1648-1663.
[22] فلاحی، فیروز؛ حکمتی فرید، صمد (1392). بررسی عوامل مؤثر بر میزان انتشار گاز دی‌اکسیدکربن در استان‌های کشور (رهیافت داده‌های تابلویی). پژوهشنامه اقتصاد انرژی ایران ، دوره‌ی ۲، بهار 6، صص 150-129.
[23] Wigmosta, M. S., Coleman, A. M., Skaggs, R. J., Huesemann, M. H., and Lane, L. J. (2011). National microalgae biofuel production potential and resource demand. Water Resources Research47(3).