حل تحلیلی معادله انتقال آلاینده در رودخانه با ضرایب متغیر دلخواه با استفاده از تکنیک تبدیل انتگرالی تعمیم‌یافته

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه سازه‌های آبی، دانشکده کشاورزی، دانشگاه تربیت مدرس

2 گروه ریاضی، دانشکده ریاضی، دانشگاه صنعتی شریف

چکیده

انتقال آلودگی در رودخانه به‌وسیله معادله دیفرانسیل با مشتق‌های جزئی جابه‌جایی-پراکندگی-واکنش (ADRE) بیان می‌شود. راه‌حل‌های تحلیلی ازجمله تبدیل‌های انتگرالی ابزارهای بسیار قدرتمند و مفیدی در حل معادله ADRE هستند. در پژوهش حاضر، معادله یک‌بعدی انتقال آلودگی در رودخانه با ضرایب وابسته به مکان با استفاده از تکنیک تبدیل انتگرالی تعمیم‌یافته، (GITT)، در دامنه‌ای با طول محدود حل شده است. در تکنیک GITT تبدیل‌های مستقیم و معکوسی تعریف می‌شود که استفاده از آن‌ها در حل مسئله منجر به تولید دستگاهی از معادلات دیفرانسیل وابسته به زمان و بنابراین ساده شدن حل معادله حاکم بر پدیده می‌گردد. صحت‌سنجی پاسخ تحلیلی ارائه شده با استفاده از مقایسه نتایج به‌دست آمده از مدل ریاضی با حل‌های تحلیلی موجود در منابع و نیز روش عددی مبتنی بر تفاضل‌های محدود انجام شد. مقایسه نتایج GITT و حل‌های تحلیلی استفاده شده در صحت‌سنجی و حل عددی به همراه شاخص‌های آماری، نشان از دقت بسیار بالای راه‌حل ارائه شده دارد. همچنین برای نشان دادن اهمیت به‌کارگیری ضرایب متغیر در معادله انتقال آلاینده در رودخانه، نتایج حل معادله با ضرایب ثابت و حل معادله با ضرایب متغیر مقایسه شد. محاسبه شاخص‌های آماری در این حالت بیانگر عدم دقت کافی نتایج معادله انتقال آلودگی با ضرایب ثابت است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analytical Solution of Contaminant Transport Equation in River by Arbitrary variable coefficients using Generalized Integral Transform Technique

نویسندگان [English]

  • Nazem Bavandpouri Gilan 1
  • Mehdi Mazaheri 1
  • Morteza Fotouhi Firouzabadi 2
1 Department of Water Structures, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
2 Sharif University of Technology
چکیده [English]

Contamination transport in the river is expressed using advection-dispersion-reaction partial differential equation (ADRE). There are a variety of analytical and numerical methods for solving the aforementioned equation. Analytical solutions such integral transforms are very powerful and useful tools in solving ADRE. In the present study, one-dimensional ADRE with space-dependent coefficients in river has been solved using generalized integral transform technique (GITT). Forward and inverse transformations are defined in GITT technique which using them in problem solving leads to generating time-dependent system of ordinary differential equations. Analytical solution verification was accomplished using the comparison of the results of mathematical models with analytical solutions and also numerically model based on finite differences method. To inspect the accuracy of models’ results, statistical indicators were calculated. Comparison of GITTs’ result with analytical solutions that used in verification and numerical solution implied high accuracy of the proposed solution. Also to show the importance of the application of variable coefficients in ADRE in river, the results of solving equation with constant and variable coefficients were compared. 

کلیدواژه‌ها [English]

  • Analytical solution
  • Contaminant transport
  • River
  • Generalized integral transform technique
  • Variable coefficient
[1] Craig, R.C. and Read, W.W. (2010). The Future of Analytical Solution Methods for Grounwater Flow and Transport Simulation, XVIII International Conference on Water Resources.
 
 
[2] Guerrero, J.S.P. Pimentel, L.C.G. Skaggs, T.H. and Van Genuchten M.Th. (2009). Analytical solution of the advection–diffusion transport equation using a change of variable and integral transform technique, International Journal of Heat and Mass Transfer, 52, 3297-3304.
 
 
[3] Yates, S.R. (1990). An analytical solution for one-dimensional transport in heterogeneous porous media, Water Resources. 26, 2331-2338.
[4] Huang, K. Van Genuchten, M. Th., and Zhang, R. (1996). Exact solutions for one-dimensional transport with asymptotic scale-dependent dispersion, Applied Mathematical Modeling, 21, 337-287.
[5] Chen, J.S. Ni, C.F. Liang, C.P. and Chiang, C.C. (2008). Analytical power series solution for contaminant transport with hyperbolic asymptotic distance dependent dispersivity, Journal of Hydrology, 962, 143-143.
 
[6] Guerrero, J.S.P. and Skaggs, T.H. (2010). Analytical solution for one-dimensional advection dispersion transport equation with distance-dependent coefficients, Journal of Hydrology, 390, 57-65.
[7] Liu, C. Ball, W.P. and Ellis, J.H. (1998). An analytical solution to one dimensional solute advection–dispersion equation in multi-layer porous media, Transport in Porous Media, 30, 25-43.
 
[8] Liu, C. Szecsody, J.E. Zachara, J.M. and Ball, W.P. (2000). Use of the generalized integral transform method for solving equations of solute transport in porous media, Water Resources. 23, 483-492.
[9] Jaiswal, D.K. Kumar, A. Kumar, N. and Yadav, R.R. (2009). Analytical solutions for temporally and spatially dependent solute dispersion of pulse type input concentration in one-dimensional semi-infinite media, Journal of Hydro-environment Research, 2, 254-263.
[10] Kumar, A. Jaiswal, D.K. and Kumar, N. (2010). Analytical solutions to one-dimensional advection–diffusion equation with variable coefficients in semi-infinite media, Journal of Hydrology, 380, 330-337.
[11] Stehfest, H. (1970). Numerical inversion of Laplace transforms, Commun. ACM, 13, 47-49.
[12] Leij, F.J. and Van Genuchten, M.Th. (1995). Approximate analytical solutions for solute transport in two-layer porous media, Transport in Porous Media, 18, 65–85.
 
[13] Al-Niami, A.N.S. and Rushton, K.R. (1979). Dispersion in stratified porous media, Water Resources, 15, 1044–1048.
[14] Leij, F.J. Dane, J.H. and Van Genuchten, M.Th. (1991). Mathematical analysis of one dimensional solute transport in a layered soil profile, Soil Sci. Soc. Am. J, 55, 944–953.
[15] Adrian, D.D., Yu, F.X. and Barbe, D. (1994). Water quality modelling for a sinusoidally varying waste discharge concentration, Water Res, 28, 1167–1174.
[16] Quezada, C.R. Clement, T.P. and Lee K.K. (2004). Generalized solution to multi-dimensional multi-species transport equations coupled with a first-order reaction network involving distinct retardation factors, Advances in Water Resources, 27, 507-520.
 
[17] Wang, W. Dai, Z. Li, J. and Zhou, L. (2012). A hybrid Laplace transform finite analytic method for solving transport problems with large Peclet and Courant numbers, Computers and Geosciences, 49, 182-189.
[18] Simpson, M.J. and Ellery, A.J. (2014). Exact series solutions of reactive transport models with general initial Conditions, Journal of Hydrology, 513, 7-12.
 
[19] Taylor, G. (1954). The dispersion of matter in turbulent flow through a pipe, P. Roy. Soc. A, 223, 446-468, doi:10.1098/rspa.1954.0130, 1954.
[20] Chapra, S.C. (1997). Surface water quality modeling, McGraw-Hill New York.
[21] Van Genuchten M.Th. and Alves, W. (1982). Analytical solutions of the one-dimensional convective-dispersive solute transport equation, Technical Bulletin.
[22] Mikhailov, M.D. and Ozisik, M.N. (1984). Unified Analysis and Solutions of Heat and Mass Diffusion, New York, John Wiley & Sons Inc.
[23] Cotta, R.M. (1994). The integral transform method in computational heat and fluid flow, Pages 43-43. Institution of Chemical Engineers Symposium series, Hemsphere Publishing Corporation.
[24] Danish Hydraulic Institute (DHI). (2007). MIKE 11 FM-Users’ manual, Horsholm, Denmark.
[25] Ozisik, M.N. (1993). Heat Conduction, John Wiley & Sons Inc, New York.
[26] Polyanin, A.D. (2002). Linear partial differential equations for Engineers and Scientists, Chapman & Hall/CRC.