[1] Wang, M.L.(1996). Exact solutions for a compound KdV-Burgers equation, Phys. Lett. A., 213, 279-287.
[2] Yang, L., Liu, J.B. and Yang, K.Q. (2001).Exact solutions of nonlinear PDE, nonlinear transformations and reduction of nonlinear PDE to a quadrature, Phys. Lett. A., 278, 267-270.
[3] Fan, E.G. (2000). Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A., 277, 212-218.
[4] Ismail, H.N.A., Raslan, K. and Rabboh, A.A.A. (2004). Adomian decomposition method for Burger’s-Huxley and Burger’s-Fisher equations, Appl. Math. Comput., 159, 291-301.
[5] Hashim, I., Noorani, M.S.M. and Batiha, B. (2006). A note on the Adomian decomposition method for the generalized Huxley equation, Appl. Math. Comput., 181, 1439-1445.
[6] Yan, Z.Y. and Zhang, H.Q. (1999). New explicit and exact travelling wave solutions for a system of variant boussinesq equations in mathematical physics, Phys. Lett. A., 252, 291-296.
[7] Mohantyand, R.K. and Gopal, V. (2013). A fourth order finite difference method based on spline in tension approximation for the solution of one-space dimensional second order quasi-linear hyperbolic equations, Advances Diff. Eq,. 2013, 70.
[8] Lin, Y. and Zhang, T. (1992). Finite element methods for nonlinear Sobolev equations with nonlinear boundary conditions, J. Comput. Appl. Math., 165, 180-191.
[9] Neilan, M. (2014). Finite element methods for fully nonlinear second order PDEs based on a discrete Hessian with applications to the Monge-Ampère equation, J. Comput. Appl. Math., 263, 351-369.
[10] Mittal, R.C. and Tripathi, A. (2015). Numerical solutions of generalized Burgers–Fisher and eneralized Burgers–Huxley equations using collocation of cubic B-splines, Int. J. Comp. Math., 92, 1053-1077.
[11] Mohammadi, R. (2013). B-Spline collocation algorithm for numerical solution of the generalized Burger’s-Huxley equation, Num. Meth. Par. Diff. Eq., 29, 1173-1191.
[12] Mohammadi, R. (2012). Spline solution of the generalized Burgers’-Fisher equation, Appl. Anal., 91, 2189-2215.
[13] Wang, X.Y., Zhu, Z.S., and Lu, Y.K. (1990). Solitary wave solutions of the generalized Burgers-Huxley equation, J. Phys. A: Math. Gen., 23, 279-274.
[14] Estevez, P.G. (1994). Non-classical symmetries and the singular modified the Burgers’ and Burgers-Huxley equation, J. Phys. A: Math. Gen., 27, 2113-2127.
[15] Fyfe, D.J. (1970). The use of cubic splines in the solution of certain fourth order boundary value problems, Comput. J., 13, 204-205.
[16] Daniel, J.W. and Swartz, B.K. (1975). Extrapolated collocation for two-point boundary value problems using cubic splines, J. Inst. Maths Appl., 16, 161-174.
[17] Irodotou-Ellina, M., Houstis, E.N. (1988). An quintic spline collocation method for fourth order two-point boundary value problems, BIT Numer. Math., 28, 288-301.
[18] Rashidinia, J., Ghasemi, M. and Jalilian, R. (2010). A collocation method for the solution of nonlinear one-dimensional parabolic equations, Math. Sci., 4, 87-104.
[19] Rashidinia, J., Ghasemi, M. and Jalilian, R. (2010). Numerical solution of the nonlinear Klein-Gordon equation, J. Comput. Appl. Math., 233, 1866-1878.
[20] Rashidinia, J. and Ghasemi, M. (2011). B-spline collocation for solution of two-point boundary value problems, J. Comput. Appl. Math., 235, 2325-2342.
[21] Ghasemi, M. (2013). A new superconvergent method for systems of nonlinear singular boundary value problems, Int. J. Comput. Math., 90, 955-977.
[22] Ghasemi, M. (2016). On using cubic spline for the solution of problemsin calculus of variations, Numer. Algor., 73, 685-710.
[23] de Boor, C. (2001). A Practical Guide to Splines, Springer-Verlag, New York.
[24] Fyfe, D. (1971). Linear dependence relations connecting equal interval nth degree splines and theirderivatives, J. Inst. Math. Appl., 7, 398-406.
[26] Zhu, C.G., and Kang, W.S. (2010). Numerical solution of Burgers’-Fisher equation by cubic B-spline quasi-interpolation, Appl. Math. Comput. 216, 2679-2686.