[1] Awad, A. M., Azzam, M. M. and Hamdan, A. M. (1981). Some inference results on P(X>Y) in the bivariate exponential model, Communications in Statistics-Theory and Methods, 10, 2515-2525.
[2] Gupta, R. D. and Gupta, R. C. (1990). Estimation of P a X bY in the Multivariate normal case, Statistics, 1, 91-97.
[3] Raqab, M. Z. and Kundu, D. (2005). Coparsion of different estimators P(X>Y) for a scaled Burr type XII distribution, Communication in Statistics-Simulation and Computation, 34(2), 465-483.
[4] Kundu, D. and Gupta, R. D. (2005). Estimation of P(X>Y) for the generalized exponential distribution, Metrika, 61, 291-308. [5] Raqab, M. Z., Madi, T. and Kundu, D. (2008). Estimation of P(X>Y) for exponential distribution under progressive type-II
censoring, Journal of Statistical Computation and Simulation, 85(2), 2854-2865.
[6]
Baklizi, A. (2008). Liklihood and Bayesian estimation of P(X>Y) using lower record values from the generalized exponential distribution, Computational Statistics and Data Analysis, 52, 3468-3473.
[7]
Asgharzadeh, A., Valiollahi, R. and Raqab, M. Z. (2011). Stress-strength reliability of Weibull distribution based on progressively censord samples, SORT, 35(2), 103-124.
[8] Lio, Y. L. and Tsai, T. R. (2012). Estimation of p X Y ( ) for Burr XII distribution based on the progressivey first failure-censord samples, Journal of Applied Statistics, 39(2), 465-483. [9] Al-Mutairi, D. K., Gitany, M. E. and Kundu, D. (2013). Inferences on Stress-strength reliability from Lindley distribution, Communications in Statistics-Theory and Methods, 42(8), 1443-1463.
[10] Ghitany, M. E., Al-Mutairi, D. K. and Aboukhamseen, S. M. (2015). Estimation of the reliability of a Stress-strength system from power indley distributions, Communications Statistics Simulation and Computation, 44, 118-136.