برآورد ((R=P(X>Y) در توزیع نمایی بر اساس روش‌های E- بیز و بیز سلسله مراتبی

نوع مقاله : مقاله پژوهشی

نویسنده

عضو هیات علمی دانشگاه پیام نور مرکز صومعه سرا

چکیده

گاهی اوقات وسیع بودن حوزه تغییرات پارامتر روی فضای پارامتر‏، باعث افزایش خطای برآوردگر پسین بیزی برآورد بیز می‌شود که در این صورت، برآوردهای E-بیز و بیز سلسله مراتبی می تواند جانشین‌های مناسبی برای برآورد بیز باشند. بنابر این در این مقاله، وقتی که و متغیرهای تصادفی مستقل و دارای توزیع های نمایی با پارامترهای مختلف می‌باشند، برآوردهای E-بیز و بیز سلسله مراتبی ، تحت تابع زیان مربع خطا به دست آورده می‌شود. سپس به کمک روش شبیه‌سازی مونت‌کارلو و دو مجموعه داده‌های واقعی، برآوردگرهای پیشهادی باهم و با برآورد بیز R مقایسه می‌شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimate R=P(X>Y) in exponential distribution, based on E-Bayesian and hierarchical Bayesian methods

چکیده [English]

Sometimes the extent of the parameter domain changes over the space of the parameter, increases the risk of posterior Bayesian. In this case, the empirical and hierarchical estimates can be a good substitute for bayesian estimation. In this study, when X and Y are two independent exponential distributions with different parameters, were estimated the E-Bayesian and hierarchical Bayesian for the under squared error loss function. This suggested methods, was compared with each other and with the Bayesian estimator using the Monte Carlo simulation and two set data.

کلیدواژه‌ها [English]

  • E-Bayesian estimation"
  • " hierarchical Bayesian estimation"
  • " exponential distribution"
  • " squared error loss function"
  • " Monte Carlo simulation
[1] Awad, A. M., Azzam, M. M. and Hamdan, A. M. (1981). Some inference results on P(X>Y) in the bivariate exponential model, Communications in Statistics-Theory and Methods, 10, 2515-2525.
[2] Gupta, R. D. and Gupta, R. C. (1990). Estimation of P a X bY in the Multivariate normal case, Statistics, 1, 91-97.
[3] Raqab, M. Z. and Kundu, D. (2005). Coparsion of different estimators P(X>Y) for a scaled Burr type XII distribution, Communication in Statistics-Simulation and Computation, 34(2), 465-483.
[4] Kundu, D. and Gupta, R. D. (2005). Estimation of P(X>Y) for the generalized exponential distribution, Metrika, 61, 291-308. [5] Raqab, M. Z., Madi, T. and Kundu, D. (2008). Estimation of P(X>Y) for exponential distribution under progressive type-II
censoring, Journal of Statistical Computation and Simulation, 85(2), 2854-2865.
[6]
Baklizi, A. (2008). Liklihood and Bayesian estimation of P(X>Y) using lower record values from the generalized exponential distribution, Computational Statistics and Data Analysis, 52, 3468-3473.
[7]
Asgharzadeh, A., Valiollahi, R. and Raqab, M. Z. (2011). Stress-strength reliability of Weibull distribution based on progressively censord samples, SORT, 35(2), 103-124.
[8] Lio, Y. L. and Tsai, T. R. (2012). Estimation of p X Y ( ) for Burr XII distribution based on the progressivey first failure-censord samples, Journal of Applied Statistics, 39(2), 465-483. [9] Al-Mutairi, D. K., Gitany, M. E. and Kundu, D. (2013). Inferences on Stress-strength reliability from Lindley distribution, Communications in Statistics-Theory and Methods, 42(8), 1443-1463.
[10] Ghitany, M. E., Al-Mutairi, D. K. and Aboukhamseen, S. M. (2015). Estimation of the reliability of a Stress-strength system from power indley distributions, Communications Statistics Simulation and Computation, 44, 118-136.