[1] Ciombra, C. F. M. (2013). Mechanics with variable-order differential operators, Ann. Phys., 12 (11-12), 692-703.
[2] Pedro, H. T. C., Kobayashi, M. H., Pereira, J. M. C. and Coimbra, C. F. M. (2008). Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere, J. Vib. Control, 14, 1569-1672.
[3] Ramirez, L. E. S. and Coimbra, C. F. M. (2011). On the variable order dynamics of the nonlinear wake caused by a sedimenting particle, Physica D, 240, 1111-1118.
[4] Shyu, J. J., Pei, S. C. and Chan, C. H. (2009). An iterative method for the design of variable fractional-order FIR different egrators, Signal Process., 89, 320-327.
[5] Sun, H. G., Chen, W. and Chen, Y. Q. (2009). Variable-order dractional differential operators in anomalous diffusion modeling, Phys. A, 388, 4586-4592.
[6] Zahra, W. K. and Hikal, M. M. (2017). Nonstandard finite difference method for solving variable order fractional control problems, J. Vib. Control, 23 (6), 948-958.
[7] Ramirez, L. E. S. and Coimbra, C. F. M. (2007). Variable order constitutive relation for viscoelasticity, Ann. Phys., 16, 543-552.
[8] Chen, C. M. (2013). Numerical methods for solving a two-dimensional variable-order modified diffusion equation. Appl. Math. Comput., 225, 62-78.
[9] Bhrawy, A. H. and Zaky, M. A. (2016). Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dyn., 80 (1), 101-116.
[10] Shen, S., Liu, F., Chen, J., Turner, I. and Anh, V. (2012). Numerical techniques for the variable order time fractional diffusion equation, Appl. Math. Comput., 218, 10861-10870.
[11] Yang, X. J. and Tenreiro Machado, J. A. (2017). A new fractional operator of variable order: application in the description of anomalous diffusion equation, Physica A: Statistical Mechanics and its Applications, 481, 276-283.
[12] Dahaghin, M. Sh. and Hassani, H. (2017). An optimization method based on the generalized polynomials for nonlinear variable-order time fractional diffusion-wave equation, Nonlinear Dyn., 88 (3), 1587-1598.
[13] Li, X. Y. and Wu, B. (2015). A numerical technique for variable fractional functional boundary value problems, Appl. Math. Lett., 43, 108-113.
[14] Chen, C. M., Liu, F., Anh, V. and Turner, I. (2010). Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation, SIAM J. Sci. Comput., 32 (4), 1740-1760.
[15] Bhrawy, A. H. and Zaky, M. A. (2017). An improved collocation method for multi-dimensional space-time variable-order fractional Schrödinger equations, Appl. Numer. Math., 11, 197-218.
[16] Zhang, H., Liu, F., Phanikumar, M, S. and Meerschaert, M. M. (2013). A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model, Comput. Math. Appl., 66, 693-701.
[17] Chen, S., Liu, F. and Burrage, K. (2014). Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media, Comput. Math. Appl., 68 (12), 2133-2141.
[18] Chen, Y. M., Wei, Y. Q., Liu, D. Y., Boutat, D. and Chen, X. K. (2016). Variable-order fractional numerical differentiation for noisy signals by wavelet denoising, J. Comput. Phys., 311, 338-347.
[19] Zhao, X., Sun, Z. Z. and Karniadakis, G. E. (2015). Second-order approximations for variable order fractional derivatives: Algorithms and applications, J. Comput. Phys., 293, 184-200.
[20] Li, X. Y. and Wu, B. (2015). A numerical technique for variable fractional functional boundary value problems, Appl. Math. Lett., 43, 108-113.
[21] Jia, Y. T., Xu, M. Q. and Lin, Y. Z. (2017). A numerical solution for variable order fractional differential equation, Appl. Math. Lett., 64, 125-130.
[22] Atangana, A. (2015). On the stability and convergence of the time-fractional variable order telegraph equation, J. Comput. Phys., 293, 104-114.
[23] Chen, C. M. (2013). Numerical methods for solving a two-dimensional variable-order modified diffusion equation, Appl. Math. Comput., 225, 62-78.
[24] Zhou, F. and Xu, X. (2016). The third kind Chebyshev wavelet collocation method for solving the time-fractional convection diffusion equations with variable coefficients, Appl. Math. Comput., 280, 11-29.
[25] Behroozifar, M. and Sazmand, A. (2017). An approximate solution based on Jacobi polynomials for time-fractional convection-diffusion equation, Appl. Math. Comput. 296, 1-17.
[26] Chen, M. H. and Deng, W. H. (2014). A second-order numerical method for two-dimensional two-sided space fractional convection diffusion equation, Appl. Math. Model. 38 (13), 3244-3259.
[27] Li, H. F., Cao, J. X. and Li, C. P. (2016). High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (III), J. Comput. Appl. Math., 299, 159-175.
[28] Wang, Y. M. (2015). A compact finite difference method for a class of time fractional convection-diffusion-wave equations with variable coefficients, Numer. Algor., 70, 635-651.
[29] Dahaghin, M. Sh. and Hassani, H. (2017). A new optimization method for a class of time fractional convection-diffusion-wave equations with variable coefficients, Eur. Phys. J. Plus, 132: 130, DOI 10.1140/epjp/i2017-11407-y.
[30] Shen, S., Liu, F., Anh, V., Turner, I. and Chen, J. (2013). A characteristic difference method for the variable-order fractional advection-diffusion equation, J. Appl. Math. Comput., 42, 371-386.
[31] Wang, J., Liu, T., Li, H., Liu, Y. and He, S. (2017). Second-order approximation scheme combined with H1-Galerkin MFE method for nonlinear time fractional convection-diffusion convection-diffusion equation, Comput. Math. Appl., 73 (6), 1182-1196.
[32] Liu, T. (2018). A wavelet multiscale method for the inverse problem of a nonlinear convection-diffusion equation, J. Comput. Appl. Math., 330, 165-176.
[33] Srinivasan, S., Poggie, J. and Zhang, X. (2018). A positivity-preserving high order discontinuous Galerkin scheme for convection-diffusion equations, J. Comput. Phys., 366, 120-143.
[34] Ezz-Eldien, S. S., Doha, Bhrawy, A. H., El-Kalaawy, A. A. and Tenreiro Machado, J. A. (2018). A new operational approach for solving fractional variational problems depending on indefinite integrals, Commun. Nonlinear. Sci. Numer. Simulat., 57, 246-263.
[35] Kreyszig, E. (1978). Introductory Functional Analysis with Applications, John Wiley and Sons. Inc.