[1] Rao, J. N. (2015). Small‐Area Estimation. John Wiley and Sons, Ltd.
[2] Wilkinson, D., and Tanser, F. (1999). GIS/GPS to document increased access to community-based treatment for tuberculosis in Africa. The Lancet, 354(9176), 394-395.
[3] رمضانی، بهمن؛ حنیفی، اعظم (1387). شناخت پراکندگی جغرافیایی شیوع سرطان معـده در استان گیلان. فصلنامه علوم و تکنولوژی محیطزیست، دورهی 13، شمارهی 2، ص92-79.
[4] رضوانی، محمود و همکاران 1374، طرح ثبت سرطان در استان گیلان، معاونت بهداشتی استان گیلان، ص 1.
[5] Ali, M., Rasool, S., Park, J. K., Saeed, S., Ochiai, R. L., Nizami, Q., and Bhutta, Z. (2004). Use of satellite imagery in constructing a household GIS database for health studies in Karachi, Pakistan. International Journal of Health Geographics, 3(1), 20.
[6] Cressie, N. (1993). Statistics for Spatial Data: Revised Edition. John Wiley and Sons.
[7] Snow, J. (1854). The cholera near Golden-square, and at Deptford. Medical Times and Gazette, 9, 321-322.
[8] Clayton, D., and Kaldor, J. (1987). Empirical Bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics, 43, 671-681.
[9] Kaiser, M. S., and Cressie, N. (1997). Modeling Poisson variables with positive spatial dependence. Statistics and Probability Letters, 35(4), 423-432.
[10] Lajaunie, C. (1991). Local risk estimation for a rare noncontagious disease based on observed frequencies. Note N-36/91/G, Centre de Géostatisque, Ecole des Mines de Paris.
[11] Oliver, M. A., Webster, R., Lajaunie, C., Muir, K. R., Parkes, S. E., Cameron, A. H., and Mann, J. R. (1998). Binomial cokriging for estimating and mapping the risk of childhood cancer. Mathematical Medicine and Biology: A Journal of the IMA, 15(3), 279-297.
[12] Monestiez, P., Dubroca, L., Bonnin, E., Durbec, J. P., and Guinet, C. (2006). Geostatistical modelling of spatial distribution of Balaenoptera physalus in the Northwestern Mediterranean Sea from sparse count data and heterogeneous observation efforts. Ecological Modelling, 193(3-4), 615-628.
[13] Goovaerts P. (2010). Geostatistical Analysis of County-Level Lung Cancer Mortality Rates in the Southeastern United States, Geographical analysis, 42(1), 32-52.
[14] Goovaerts, P. (2005). Geostatistical analysis of disease data: estimation of cancer mortality risk from empirical frequencies using Poisson kriging. International Journal of Health Geographics, 4(1), 31.
[15] Goovaerts, P. (2009). Medical geography: a promising field of application for geostatistics. Mathematical Geosciences, 41(3), 243.
[16] Shao, C., Mueller, U., and Cross, J. (2009). Area-to-point Poisson kriging analysis for lung cancer in Perth areas. Proceedings of the 18th World IMACS/MODSIM Congress, Jul 13-17, Caire, Australia.
[17] Kerry, R., Goovaerts, P., Smit, I., and Ingram, P. R. (2010). A Comparison of Indicator and Poisson Kriging of Herbivore Species Abundance in Kruger National Park. South Africa [Online].
[18] Bandyopadhyay, D., Reich, B. J., and Slate, E. H. (2011). A spatial beta-binomial model for clustered count data on dental caries. Statistical Methods in Medical Research, 20(2), 85-102.
[19] Harrison, X. A. (2015). A comparison of observation-level random effect and Beta-Binomial models for modelling overdispersion in Binomial data in ecology and evolution, PeerJ, 3, e1114.
[20] Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Series B (Methodology), 36(2), 192-236.
[21] Ferrari, S., and Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions. Journal of Applied Statistics, 31(7), 799-815.
[22] Rue, H., Martino, S., and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society, Series B (Methodology), 71(2), 319-392.
[23] Rue, H., and Held, L. (2005). Gaussian Markov random fields: theory and applications, CRC press, London.
[24] Isaksson, A., Wallman, M., Göransson, H., and Gustafsson, M. G. (2008). Cross-validation and bootstrapping are unreliable in small sample classification. Pattern Recognition Letters, 29(14), 1960-1965.
[25] Varoquaux, G. (2017). Cross-validation failure: small sample sizes lead to large error bars. Neuroimage, 180, 68-77.