پایداری ناارشمیدسی هایرز-اولام معادلات دیفرانسیل خطی ناهمگن مرتبه‌ دوم

نوع مقاله : مقاله پژوهشی

نویسنده

گروه ریاضی، دانشگاه شهید چمران اهواز

چکیده

فرض کنیم فضای نرمدار ناارشمیدسی اعداد حقیقی باشد. معادله دیفرانسیل خطی ناهمگن مرتبه‌ دوم با ضرایب غیرثابت را در نظر می‌گیریم که در آن توابع داده شده پیوسته هستند. در این مقاله پایداری هایرز-اولام این معادله را در فضای نرمدار ناارشمیدسی اعداد حقیقی ثابت می‌کنیم. معادله دیفرانسیل خطی ناهمگن مرتبه‌ دوم با ضرایب غیرثابت را در نظر می‌گیریم که در آن توابع داده شده پیوسته هستند. در این مقاله پایداری هایرز-اولام این معادله را در فضای نرمدار ناارشمیدسی اعداد حقیقی ثابت می‌کنیم.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Non-Archimedean stability of nonhomogeneous second order linear differential equations

نویسنده [English]

  • Hamid Majani
Department of mathematics, Shahid Chamran university of Ahvaz, Ahvaz, Iran.
چکیده [English]

Let be a non-Archimedean normed space of real numbers. In this paper, we prove the Hyers-Ulam stability of nonhomogeneous second order linear differential equations with non-constant coefficients, where are given continuous functions, in the non-Archimedean normed space . In this paper, we prove the Hyers-Ulam stability of nonhomogeneous second order linear differential equations with non-constant coefficients, where are given continuous functions, in the non-Archimedean normed space .

کلیدواژه‌ها [English]

  • Hyers-Ulam stability
  • Linear Differential Equations
  • Non-Archimedean norm
[1] Czerwik, S. (2002). Functional Equations and Inequalities in Several Variables, World Scientific, Singapore.
[2] Hyers, D.H., Isac, G. and Rassias, T.M. (1998). Stability of Functional Equations in Several Variables, Birkhäuser, Boston.
[3] Sahoo, P.K. and Kannappan, P. (2011). Introduction to Functional Equations, CRC Press, Boca Raton.
[4] Obłoza, M. (1993). Hyers stability of the linear differential equation, Rocz. Nauk.-Dydakt. Pr. Mat. 13, 259-270.
[5] Obłoza, M. (1997). Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocz. Nauk.-Dydakt. Pr. Mat. 14, 141-146.
[6] Alsina, C and Ger, R. (1998). On some inequalities and stability results related to the exponential function, J. Inequal. Appl. 2, 373-380.
[7] Găvruţa, P., Jung, S-M. and Li, Y. (2011). Hyers-Ulam stability for second-order linear differential equations with boundary conditions, Electronic. J. Differ. Equ., 801-5.
[8] Jung, S-M. (2004). Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 17, 1135-1140.
[9] Jung, S-M. (2006). Hyers-Ulam stability of linear differential equations of first order, II, Appl. Math. Lett. 19, 854-858.
[10] Jung, S-M. (2006). Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients, J. Math. Anal. Appl. 320, 549-561.
[11] Miura, T., Oka, H., Takahasi, S-E. and Niwa, N. (2007). Hyers-Ulam stability of the first order linear differential equation for Banach space-valued holomorphic mappings, J. Math. Inequal. 3, 377-385.
[12] Popa, D. and Raşa, I. (2011). On the Hyers-Ulam stability of the linear differential equation, J. Math. Anal. Appl. 381, 530-537.
[13] Popa, D. and Raşa, I. (2012). Hyers-Ulam stability of the linear differential operator with non-constant coefficients, Appl. Math. Comput219, 1562-1568.
[14] Rus, I.A. (2009). Ulam stability of ordinary differential equations, Stud. Univ. Babeş–Bolyai, Math54, 125-134.
[15] Wang, G., Zhou, M. and Sun, L. (2008). Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett21, 1024-1028.
[16] Alqifary, Q.H. and Jung, S-M. (2014). On the Hyers-Ulam stability of differential equations of second order, Abstr. Appl. Anal., Article ID 483707.
[17] Cîmpean, D.S. and Popa, D. (2010). On the stability of the linear differential equation of higher order with constant coefficients, Appl. Math. Comput217, 4141-4146.
[18] Ghaemi, M.B., Gordji, M.E., Alizadeh and B, Park, C. (2012). Hyers-Ulam stability of exact second-order linear differential equations, Adv. Differ. Equ., Article ID 36.
[19] Li, Y. and Shen, Y. (2010). Hyers-Ulam stability of linear differential equations of second order, Appl. Math. Lett. 23, 306-309.
[20] Javadian, A. (2015). Approximately n-order linear differential equations,International Journal of Nonlinear Analysis and Applications, 6(1), Page 135-139.
[21] S. Shagholi, M. Eshaghi Gordji and M. Bavand Savadkouhi, (2011) Stability of ternary quadratic derivation on ternary Banach algebras, J. Comput. Anal. Appl. 13, 1097–1105.
[22] Hensel, K. (1899). Uber eine neue begründung der theorie der algebraischen zahlen, Jahresbericht der Deutschen Mathematiker-Vereinigung 6, 83–88.
[23] ‎Bachman‎, G. (1964). ‎Introduction to P-Adic Numbers and Valuation Theory‎, ‎Academic Press inc. (London) LTD‎.
[24] Khrennikov, A. (1997). Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Kluwer Academic Publishers, Dordrecht.
[25] Mahler, K. (1981). p-adic numbers and their functions, Cambridge University Press.
[26] Kreyszig, E. (1979). Advanced Engineering Mathematics, 4th edition. Wiley, New York.