[1] Shumway, R.H. and Stoffer, D.S. (2017). Time Series Analysis and its Applications with R Examples. 4th ed., Springer Texts in Statistics, Springer, Cham.
[2] Chilès, J.P. and Delfner, P. (2012). Geostatistics: Modeling Spatial Uncertainty. 2nd ed., Wiley, New York.
[3] Cressie, N. and Wikle, C.K. (2013). Statistics for spatio-temporal data, John Wiley and Sons.
[4] Cressie, N. (1993). Statistics for spatial data, New York: John Willey and Sons.
[5] Bochner, S. (1955). Harmonic analysis and the theory of probability. University of California Press, Berkeley and Los Angeles.
[6] Cressie, N. and Huang, H.C. (1999). Classes of nonseparable, spatio-temporal stationary covariance functions. J. Amer. Statist. Assoc., 94, 1330-1340.
[7] Kammler, D.W. (2007). A first course in Fourier analysis. 2nd ed., Cambridge University Press, Cambridge.
[8] Gneiting, T. (2002). Nonseparable stationary covariance functions for space-time data. J. Amer. Statist. Assoc., 97, 590-600.
[9] Kent, J.T., Mohammadzadeh, M. and Mosammam, A.M. (2011). The dimple in Gneiting's spatial-temporal covariance model. Biometrika, 98, 489-494.
[10] Omidi, M. and Mohammadzadeh, M. (2015). A New Method to Build Spatio-Temporal Covariance Functions: Analysis of Ozone Data. Statistical Papers, 57, 689–703.
[11] Horrell, M.T. and Stein, M.L. (2017). Half-spectral space-time covariance models. Spat. Stat., 19, 90-100.
[12] Stein, M.L. (2005). Statistical methods for regular monitoring data. J. R. Stat. Soc. Ser. B Stat.Methodol., 67, 667-687
[13] Rodr'iguez-Iturbe, I. and Meji'a, J.M. (1974). The design of rainfall networks in time and space. WaterResources Research, 10, 713-728.
[14] Stein, M.L. (2011). When does the screening effect not hold?. Ann. Statist., 39, 2795-2819
[15] Journel, A.G. and Huijbregts, C.J. (1978). Mining geostatistics. Academic press.
[16] Mosammam, A.M. and Kent, J.T. (2016). Estimation and testing for covariance-spectral spatial-temporal models. Environ. Ecol. Stat., 23, 43-64.
[17] Mardia, K.V. and Marshall, R.J. (1984). Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika, 71, 135-146.
[18] Cressie, N. (1985). Fitting variogram models by weighted least squares. Journal of the International Association for Mathematical Geology, 17, 563-586.
[19] Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems with discussion. Journal of the Royal Statistical Society, no. Series B, 192-236.
[20] Whittle, P. (1954). On stationary processes in the plane. Biometrika, 41, 434-449.
[21] Whittle, P. (1954). On stationary processes in the plane. Biometrika, 41, 434-449.
[22] Sahu, S.K.G., Gelfand, A.E., Holland, D.M. and Mardia, K. (2006). Spatio-Temporal modeling of fine particulate matter. Journal of Agricultural, Biological and Environmental Statistics, 11, 61-86.
[23] Huang, H.C., Martinez, F., Mateu, J and Montes, F. (2007). Model comparison and selection for stationary space-time models. Computational statistics and data analysis, 51, 4577-4596.
[24] Cleveland, W.S. (1981). LOWESS: A program for smoothing scatterplots by robust locally weighted regression. The American Statistician 35, 54
[25] Hoeting, J.A., Davis, R. A., Merton, A. A., & Thompson, S. E. (2006). Model selection for geostatistical models. Ecological Applications, 16(1), 87-98.
[26] Lee, H., and Ghosh, S.K. (2009). Performance of information criteria for spatial models. Journal of statistical computation and simulation, 79(1), 93-106.
[27] Huang, H.C., Martinez, F., Mateu, J., and Montes, F. (2007). Model comparison and selection for stationary space–time models. Computational Statistics & Data Analysis, 51(9), 4577-4596.
[28] امیدی، مهدی، محمدزاده، محسن (1392). تعیین ساختار همبستگی دادههای فضایی با توابع مفصل، نشریه علوم دانشگاه خوارزمی، 3، شماره 3، صص797-808.