[1] Banerjee, S. and Verghese, G.C. (2001). Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos, and Nonlinear Control, IEEE Press, New York.
[2] Bischi, G.L. and Chiarella, C. and Kopel, M. and Szidarovszky, F. (2009). Nonlinear oligopolies: Stability and bifurcations, Heidelberg, Springer.
[3] Devaney, R. (1986). An introduction to chaotic dynamical systems. The Benjamin, Cummings Publishing Corporation, Menlo Park, California.
[4] Bernardo, M.D and Budd, C.J. and Champneys, A.R. and Kowalczyk, P. (2008). Piecewise-smooth Dynamical Systems: Theory and Applications, Applied Mathematical Sciences.
[5] Grosse-Erdmann, K. G. and Manguillot, A. P. (2011). Linear Chaos, Springer Verlag, London.
[6] Makrooni, R. and Gardini, L. and Sushko, I. (2015). Bifurcation structures in a family of 1D discontinuos linear-hyperbolic invertible maps, Int. J. Bifurcation and Chaos, 25, 1530039
[7] Makrooni, R. and Khellat, F. and L. Gardini, L. (2015). Border collision and fold bifurcations in a family of one-dimensional discontinuous piecewise smooth maps: Unbounded chaotic sets, Journal of Difference Equations and Applications, 21, 660-695.
[8] Makrooni, R. and Khellat, F. and Gardini, L. (2015). Border collision and fold bifurcations in a family of piecesiwe smooth maps: Divergence and Bounded Dynamics, 21, 791-824.
[9] Makrooni, R. and Abbasi, N. and Pourbarat, M. and Gardini, L. (2015). Robust unbounded chaotic attractors in 1D discontinuous maps, Chaos Solitons & Fractals, 77, 310-318.
[10] Nordmark, A.B. (1991). Non-periodic motion caused by grazing incidence in an impact oscillator, Journal of Sound and Vibration, 145, 279-297.
[11] Nordmark, A.B. (1997). Universal limit mapping in grazing bifurcations, Physical Review E, 55, 266-270.
[12] Puu, T. and Sushko, I. (2002). Oligopoly Dynamics, Models and Tools, Springer Verlag, New York.
[13] Puu, T. Sushko,I. (2006) Business Cycle Dynamics, Models and Tools, Springer Verlag, New York.
[14] Tramontana, F. and Gardini, L. and Ferri, P. (2010). The dynamics of the NAIRU model with two switching regimes, J. Econ. Dyn. Control, 34, 681-695.
[15] Tramontana, F. and Westerhoff, F. and Gardini, L. (2010). On the complicated price dynamics of a simple one-dimensional discontinuous financial market model with heterogeneous interacting traders, J. Econ. Behav. Organ. 74, 187-205.