برنامه ریزی درجه دوم محدب تعمیم یافته برای حل دستگاه های خطی فازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه ریاضی کاربردی، دانشگاه فردوسی مشهد

2 گروه ریاضی کاربردی، دانشگاه دامغان

چکیده

دستگاه معادلات خطی، یکی از مهمترین ابزارهای مدلسازی پدیده های دنیای واقعی است. اما از آنجاییکه پدیده های دنیای واقعی همواره با عدم قطعیت همراه هستند، لذا حل دستگاه معادلات خطی فازی از اهمیت بسزایی برخوردار می‌شود. یکی از روش های متداول و پر کاربرد برای یافتن جواب‌های دقیق و تقریبی یک دستگاه معادلات خطی فازی، استفاده از روش کمترین مربعات است. در این روش، با انتخاب یک متر دلخواه و حل یک مساله برنامه ریزی درجه دوم متناظر، جواب تقریبی (و گاه دقیق) برای دستگاه معادلات خطی فازی ارائه می‌شود. در این مقاله، ابتدا نشان می‌دهیم که مساله برنامه ریزی درجه دوم متناظر با سه متر مختلف معروف و متداول، تحت شرایط مناسب مستقل از نوع تابع متر انتخاب شده، محدب است. سپس با در نظر گرفتن این سه متر متفاوت، با حل مثال های متعدد و مقایسه جواب های تقریبی به‌دست آمده از آنها، به دنبال انتخاب بهترین متر خواهیم بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A generalized convex quadratic programming to solve fuzzy linear system

نویسندگان [English]

  • Omid Solaymani Fard 1
  • Naser Akhoundi 2
  • Mohadeseh RamezanZadeh 2
  • Morteza Gachpazan 1
1 Department of Applied Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran
2 Department of Applied Mathematics, Damghan University, Damghan, Iran
چکیده [English]

The linear systems are one of the most important tools for modeling real-world phenomena. Because the real-world phenomena are always associated with uncertainty, solving the fuzzy linear system have a great importance. One of the proposed methods to find the exact and approximate solutions of a fuzzy linear system is using the least squares method. In this method, by choosing an arbitrary meter and solving a quadratic programming, they provide an approximate (or exact) solution for the fuzzy linear system. In this paper, at first, we prove that under some conditions and not depending on the selected meter the quadratic programming is convex. Therefore, by considering three different meters and solving several examples, we compare the obtained approximate solutions.

کلیدواژه‌ها [English]

  • Fuzzy Numbers
  • Convex quadratic programming
  • Least squares
[1] John, R. I. and Innocent, P. R. (2005). Modeling uncertainty in clinical diagnosis using fuzzy logic. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(6), 1340-1350.
[2] Allahviranloo, T. and Babakordi, F. (2017). Algebraic solution of fuzzy linear system as: , Soft Computing, 21(24), 7463-7472.
[3] Jerković, V.M., Mihailović, B. and Malešević, B. (2017). A New Method for Solving Square Fuzzy Linear Systems, in Advances in Fuzzy Logic and Technology 2017, Springer, 278-289.
[4] Najariyan, M., Mazandarani, M. and John, R. (2017). Type-2 fuzzy linear systems. Granular Computing, 2(3), 175-186.
[5] Senthilkumar, P. and Rajendran, G. (2011). An algorithmic approach to solve fuzzy linear systems. Journal of Information and Computational Science, 8(3), 503-510.
[6] Ezzati, R. (2011). Solving fuzzy linear systems. Soft computing,15(1), 193-197.
[7] Allahviranloo, T. and Ghanbari, M. (2012). On the algebraic solution of fuzzy linear systems based on interval theory. Applied mathematical modelling, 36(11), 5360-5379.
[8] Ghanbari, R. (2015). Solutions of fuzzy LR algebraic linear systems using linear programs. Applied Mathematical Modelling, 3(17), 5164-5173.
[9] Babbar, N., Kumar, A. and Bansal, A. (2013). Solving fully fuzzy linear system with arbitrary triangular fuzzy numbers , Soft Computing, 17(4), 691-702.
[10] Inearat, L. and Qatanani, N. (2018). Numerical Methods for Solving Fuzzy Linear Systems. Mathematics, 6(19(, 1-9.
[11] Ghanbari, R. and Mahdavi-Amiri, N. (2015). Fuzzy LR linear systems: quadratic and least squares models to characterize exact solutions and an algorithm to compute approximate solutions. Soft Computing, 19(1), 205-216.
[12] Ghanbari, R., Mahdavi-Amiri, N. and Yousefpour, R. (2010). Exact and approximate solutions of fuzzy LR linear systems: new algorithms using a least squares model and the abs approach. Iranian Journal of Fuzzy Systems, 7(2), 1-8.
[13] Ezzati, R., Khezerloo, S. and Ziari, S. (2015). Application of parametric form for ranking of fuzzy numbers. Iranian Journal of Fuzzy Systems, 12(1), 59-74.
[14] Zimmermann, H. J. (2011). Fuzzy set theory and its applications. Springer Science & Business Media, NewYork.
[15] Ming, M., Friedman, M. and Kandel, A. (1997). General fuzzy least squares. Fuzzy sets and systems, 88(1), 107-118.
[16] Rabiei, M. R., Arghami, N. R., Taheri, S. M. and Sadeghpour, B. (2013). Fuzzy regression model with interval-valued fuzzy input-output data. in Fuzzy System (FUZZ), IEEE International Conference on 2013, 1-7.
[17] Xu, R. and Li, C. (2001). Multidimensional least-squares fitting with a fuzzy model. Fuzzy sets and systems, 119(2), 215-223.
[18] Wang, X. and Kerre, E. E. (2001). Reasonable properties for the ordering of fuzzy quantities (I). Fuzzy sets and systems, 118(3), 375-385.
[19] Wang, X. and Kerre, E. E. (2001). Reasonable properties for the ordering of fuzzy quantities (II). Fuzzy sets and systems, 118(3), 387-405.