نگاشت های R - s - پیوسته

نوع مقاله : مقاله پژوهشی

نویسنده

گروه ریاضی، دانشگاه شهیدچمران اهواز

چکیده

کلاس جدیدی از نگاشتهای پیوسته، به نام نگاشت های R - s - پیوسته ، معرفی میشود. ارتباط میان R - s - پیوستگی
با پیوستگی و انواع دیگری ازپیوستگیهای قوی که تاکنون معرفی شده اند، بررسی میشود. سپس ویژگیهای نگاشتهای
R - s - پیوسته مورد مطالعه قرار میگیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

s- R - continuous functions

نویسنده [English]

  • Masoumeh Etebar
Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

A new class of continuous functions, namely s - R - continuous
functions, is introduced. The relations of s - R - continuity with
continuity and other variants of continuity are discussed. Basic
Properties of s - R - continuous functions are studied.
Conditions are established under which every weakly theta_cl -continuous
function is s - R - continuous.

کلیدواژه‌ها [English]

  • theta - open set
  • theta_cl - open set
  • R - continuous function
  • theta - R - continuous function
[1] Konstadilaki-Savvopoulou, Ch. and Jankovik, D. (1992). R-continuous functions, Internat. J. Math. & Math. Sci., 15, 57-64.
[2]Baker, C. W. (1994). θ-R-continuous functions, Internat. J. Math. & Math. Sci. 17(1), 73-78.
[3] Tyagi, B. K., Kohli, J. K. and Singh, D. (2013). Rcl-super continuousfunctions, Demonstratio Math., 46(1), 229-244.
[4] Velicko, N.V. (1968). H-closed topological spaces, Amer. Math. Soc. Transl. 78(2),103-118.
[5]Singh, D. (2007). cl-supercontinuous functions, Applied Gen. Top., 8(2), 293-300.
[6]Etebar, M., Strongly θcl-continuous functions, to appear.
[7]Steen, L. A. and Seebach, J. A. Jr. (1978). Counterexamples in Topology, Springer Verlag, New York.
[8]Staum, R. (1974). The algebra of bounded continuous functions into a nonarchimedean field, Pac. J. Math. 50(1),169-185.
[9]Noiri, T. (1980). On δ-continuous functions, Jour of the Korean Math. Soc. 16(2),161-166.
 [10] Willard, S. (1970). General Topology, Addison-wesley Publishing Company, Inc.
[11] Sostak, A. (1976). On a class of topological space containing all bicompact and connected spaces, General Topology and its Relation to Modern Analysis and Algebra IV: Proceedings of the 4th Prague Topological Symposium, Part B, 445-451.
[12]Etebar, M. (2018). Relations between continuity and continuity, JP J.Geom.Topol., 21(4), 317-325.