[1] Weinan, E. (1994). Dynamics of vortices in Ginzburg-Landau theories
with applications to superconductivity
. Physica D: Nonlinear
Phenomena
,
77
(4), 383-404.
[2] Chen, Z. (1997). Mixed finite element methods for a dynamical Ginzburg-
Landau model in superconductivity.
Numerische Mathematik
,
[3] Xu, Q., and Chang, Q. (2011). Difference methods for computing the
Ginzburg-Landau equation in two dimensions.
Numerical Methods for
Partial Differential Equations
,
27
(3), 507-528.
[4] Mu, M., and Huang, Y. (1998). An alternating Crank-Nicolson method for
decoupling the Ginzburg-Landau equations.
SIAM journal on numerical
analysis
,
35
(5), 1740-1761.
[5] Shokri, A., and Dehghan, M. (2012). A meshless method using radial basis
functions for the numerical solution of two-dimensional complex
Ginzburg-Landau equation. Computer Modeling in Engineering and
Sciences,
84
(4), 333.
[6] Liu G R.
Mesh free methods: moving beyond the finite element method
.
CRC press, 2002.
[7] Gingold, R. A., and Monaghan, J. J. (1977). Smoothed particle
hydrodynamics: theory and application to non-spherical stars
. Monthly
notices of the royal astronomical society
,
181
(3), 375-389.
[8] Li, Hua., and Shantanu, S. Mulay.