مدل مرتبۀ کسری سرمایش یک جسم نیمه‌نامتناهی با تابش

نوع مقاله : مقاله پژوهشی

نویسنده

گروه ریاضی، دانشگاه کردستان

چکیده

در این مقاله مدل مرتبۀ کسری سرمایش یک جسم نیمه‌نامتناهی در اثر تابش معرفی می‌شود. در جسم نیمه‌نامتناهی مفروض‏، معادلۀ گرما به‌همراه یک شرط اولیه و یک شرط مرزی مجانبی تشکیل تک‌معادله‌ای هم‌ارز می‌دهند که در آن مرتبۀ مشتق‌ها نصف شده است. این معادله و یک شرط مرزی که با انتقال تابشی گرما معرفی می‌شود‏، تشکیل مسئله‌ای مقدار اولیه می‌دهند که معادلۀ دیفرانسیل آن معمولی‏، غیرخطی و مرتبۀ کسری است. جواب نیمه‌تحلیلی این مدل غیرخطی در زمانهای کوچک و بزرگ به صورت مجانبی تعیین ‎‎می‌شود. همچنین‏، دو روش عددی تقریب گرونوالد-لتنیکوف و تقریب مونتس-لژاندر جوابهای عددی مسئله را به‌دست می‌آورد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fractional-order Model for Cooling of a Semi-infinite Body by Radiation

نویسنده [English]

  • Shahrokh Esmaeili
Department of Mathematics, University of Kurdistan, Sanandaj, Iran
چکیده [English]

‎In this paper‎, ‎the fractional-order model for cooling of a semi-infinite body by radiation is considered‎.
‎In the supposed semi-infinite body‎, ‎the equation of heat along with an initial condition and an asymptotic boundary condition form an equivalent equation in which the order of derivatives is halved‎.
‎This equation and a boundary condition introduced by the radiation heat transfer give rise to an initial value problem‎, ‎whose differential equation is nonlinear and fractional order‎.
‎The semi-analytical solution to this nonlinear model was determined asymptotically at small and large times‎.
‎Moreover‎, ‎two numerical methods including Grunwald-Letnikov approximation and Muntz-Legendre approximation yield numerical solutions to the problem‎.

کلیدواژه‌ها [English]

  • Fractional differential equation‎
  • ‎Heat equation‎
  • ‎Semi-infinite body‎
  • ‎Radiation heat transfer‎
Evans, L.C. (2010).
Partial Differential Equations
, Providence: AMS.
Carslaw, H.S. and Jaeger, J.C. (1959).
Conduction of Heat in Solids
,
Oxford: Clarendon Press.
Oldham, K.B. and Spanier, J. (1972).
A general solution of the diffusion
equation for semi-infinite geometries
 Journal of Mathematical Analysis
and Applications,
39.655
669.
Holman, J.P. (2009).
Heat Transfer
, New York: McGraw-Hill Education.
Podlubny, I. (1999).
Fractional Differential Equations
, San Diego, CA:
Academic Press.
 Baleanu, D., Diethelm, K., Scalas, E. and Trujillo, J.J. (2016).
Fractional
Calculus: Models and Numerical Methods
, Singapore: World Scientific.
Diethelm, K. (2010). The Analysis of Fractional Differential Equations,
Berlin: Springer.
8.Karniadakis, G.E. (Ed.) (2019). Numerical Methods, Volume 3 of
Handbook of Fractional Calculus with Applications, Berlin: De Gruyter.
Tripathi, N.K. Das, S. Ong, S.H. Hossein, J. and Al Qurashi, M. (2016).
Solution of higher order nonlinear time-fractional reaction diffusion
equation,
Entropy
,
18
, 329.
Babenko, Y.I. (1986). Heat and Mass Transfer: The Method of
Calculation for the Heat and Diffusion Flows (in Russian), Leningrad:
  Fractional
Calculus: Models and Numerical Methods
, Singapore: World Scientific.
Diethelm, K. (2010). The Analysis of Fractional Differential Equations,
Berlin: Springer.
 Karniadakis, G.E. (Ed.) (2019). Numerical Methods, Volume 3 of
Handbook of Fractional Calculus with Applications, Berlin: De Gruyter.
[9] Tripathi, N.K. Das, S. Ong, S.H. Hossein, J. and Al Qurashi, M. (2016).
Solution of higher order nonlinear time-fractional reaction diffusion
equation,
Entropy
,
18
, 329.
Babenko, Y.I. (1986). Heat and Mass Transfer: The Method of
Calculation for the Heat and Diffusion Flows (in Russian), Leningrad: