نوع مقاله : مقاله پژوهشی
نویسندگان
1 گروه ریاضی، دانشگاه شهید چمران اهواز
2 گروه ریاضی، دانشگاه پیام نور، تهران
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
In this paper, we assume that X is a BCK-algebra and y, t elements of X. We assign to these elements a set, denoted by F(y; t). We show that F(y; t) is a subalgebra of X. Then we prove that a BCK-algebra X is a Linear Commutative BCK-algebra if and only if every F(y; t) is an initial set of X. Moreover, we give a necessary and sufficient condition for F(y; t) to be an ideal. Finally, we show that the set consisting of all these sets forms a bounded distributive lattice.
کلیدواژهها [English]