نتایج وجودی و یکتایی برای مسائل مقدار مرزی کسری دارای شرط ضربه ای در فضاهای باناخ

نوع مقاله : مقاله پژوهشی

نویسندگان

بابلسر، دانشگاه مازندران، دانشکده علوم ریاضی، گروه ریاضی

چکیده

در این مقاله چندین شرط کافی برای وجود حداقل جواب ضعیف برای مسئله مقدار مرزی کسری با شرط ضربه در نظر گرفته شده است. روش مورد استفاده ما مبتنی بر روش‌های تغییراتی است. برخی از نتایج اخیر گسترش و بهبود یافته‌اند. علاوه بر این، یک مثال برای تفهیم بیش‌تر نتایج به‌دست‌آمده، ارائه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

EXISTENCE AND UNIQUENESS RESULTS FOR IMPULSIVE FRACTIONAL BOUNDARY VALUE PROBLEM IN BANACH SPACES

نویسندگان [English]

  • Ghasem Alizadeh Afrouzi
  • Shahin Moradi
Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
چکیده [English]

This paper presents several sufficient conditions for the existence of at least one weak solution for the impulsive nonlinear fractional boundary value problem. Our technical approach is based on variational methods. Some recent results are extended and improved. Moreover, a concrete example of an application is presented.

کلیدواژه‌ها [English]

  • Fractional differential equations
  • One weak solution
  • Impulsive effect
  • Variational methods
[1] Afrouzi, G.A., Hadjian, A. and Molica Bisci, G. (2013), Some remarks for one-dimensional mean curvature problems through a local minimization principle, Adv. Nonlinear Anal. 2, 427-441.
[2] Bai, C. (2011), Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative, J. Math. Anal. Appl. 384, 211-231.
[3] Bai, C. (2011), Solvability of multi-point boundary value problem of nonlinear impulsive fractional differential equation at resonance, Electron. J. Qual. Theory Differ. Equ. 89, 1-19.
[4] Benson, D., Wheatcraft, S. and Meerschaert, M. (2000), Application of a fractional advection dispersion equation, Water Resour. Res. 36, 1403-1412.
[5] Benson, D., Wheatcraft, S. and Meerschaert, M. (2000), The fractional-order governing equation of Lévy motion, Water Resour. Res. 36, 1413-1423.
[6] Bonanno, G. and Molica Bisci, G. (2009), Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl. 2009, 1-20.
[7] Bonanno, G., Rodríguez-López, R. and Tersian, S. (2014), Existence of solutions to boundary-value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal. 3, 717-744.
[8] Chen, J. and Tang, X.H. (2012), Existence and multiplicity of solutions for some fractional boundary value problem via critical point theory, Abstr. Appl. Anal. 2012, 1-12.
[9] Diethelm, K. (2010), The Analysis of Fractional Differential Equation, Springer, Heidelberg.
[10] Drábek, P. and Milota, J. (2007), Methods of Nonlinear Analisis; Applications to Differential equations, Birkhäuser Verlag AG, Basel, Boston, Berlin.
[11] Eggleston, J. and Rojstaczer, S. (1998), Identification of large-scale hydraulic conductivity trends and the influence of trends on contaminant transport, Water Resources Researces, 34, 2155-2168.
[12] Fec̆kan, M., Wang, M. and Zhou, Y. (2011), On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ. 8, 345-361.
[13] Galewski, G. and Molica Bisci, G. (2016), Existence results for one-dimensional fractional equations, Math. Meth. Appl. Sci. 39, 1480-1492.
[14] Gao, Z., Yang, L. and Liu, G. (2013), Existence and uniqueness of solutions to impulsive fractional integro-differential equations with nonlocal conditions, Appl. Math. 4, 859-863.
[15] Guo, L. and Zhang, X. (2014), Existence of positive solutions for the singular fractional differential equations, J. Appl. Math. Comput. 44, 215-228.
[16] Heidarkhani, S. (2014), Multiple solutions for a nonlinear perturbed fractional boundary value problem, Dynamic. Sys. Appl. 23, 317-331.
[17] Heidarkhani, S., Afrouzi, G.A., Ferrara, M., Caristi, G. and Moradi, S. (2018), Existence results for impulsive damped vibration systems, Bull. Malays. Math. Sci. Soc. 41, 1409-1428.
[18] Heidarkhani, S., Afrouzi, G.A., Moradi, S., Caristi, G. and Ge, B. (2016), Existence of one weak solution for p(x)-biharmonic equations with Navier boundary conditions, Zeitschrift fuer Angewandte Mathematik und Physik, 67, 73.
[19] Heidarkhani, S., Ferrara, M. and Salari, A. (2015), Infinitely many periodic solutions for a class of perturbed second-order differential equations with impulses, Acta. Appl. Math. 139, 81-94.
[20] Heidarkhani, S. and Salari, A. (2020), Nontrivial solutions for impulsive fractional differential systems through variational methods, Math. Meth. Appl. Sci. 43, 6529-6541.
[21] Heidarkhani, S., Zhao, Y., Caristi, G., Afrouzi, G.A. and Moradi, S. (2017), Infinitely many solutions for perturbed impulsive fractional differential systems, Appl. Anal. 96, 1401-1424.
[22] Hilfer, R. (2020), Applications of Fractional Calculus in Physics, World Scientific, Singapore.
[23] Jiao, F. and Zhou, Y. (2011), Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl. 62, 1181-1199.
[24] Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. (2006), Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam.
[25] Kong, L. (2013), Existence of solutions to boundary value problems arising from the fractional advection dispersion equation, Electron. J. Diff. Equ., Vol. 2013, No. 106, pp. 1–15.
[26] Lakshmikantham, V., Baĭnov, D.D. and Simeonov, P.S. (1989), Theory of Impulsive Differential Equations, vol. 6 of Series in Modern Applied Mathematics, World Scientific, Teaneck, NJ, USA.
[27] Oldham, K.B. and Spanier, J. (1974), The Fractional Calculus, Academic Press, New York.
[28] Ricceri, B. (2000), A general variational principle and some of its applications, J. Comput. Appl. Math. 113, 401-410.
[29] Risken, H. (1998), The Fokker-Planck Equation, Springer, Berlin.
[30] Rodríguez-López, R. and Tersian, S. (2014), Multiple solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal. 17, 1016-1038.
[31] Samko, S.G., Kilbas, A.A. and Marichev, Q.A. (1993), Fractional Integral and Derivatives: Theory and Applications, Gordon and Breach, Longhorne, PA.
[32] Sun, J. and Chen, H. (2009), Variational method to the impulsive equation with Neumann boundary conditions, Bound. Value Prob. 2009, 316812.
[33] Wang, J., Li, X. and Wei, W. (2012), On the natural solution of an impulsive fractional differential equation of order q in (1,2), Commun. Nonlinear Sci. Numer. Simul. 17, 4384-4394.