[1] Afrouzi, G.A., Hadjian, A. and Molica Bisci, G. (2013), Some remarks for one-dimensional mean curvature problems through a local minimization principle, Adv. Nonlinear Anal. 2, 427-441.
[2] Bai, C. (2011), Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative, J. Math. Anal. Appl. 384, 211-231.
[3] Bai, C. (2011), Solvability of multi-point boundary value problem of nonlinear impulsive fractional differential equation at resonance, Electron. J. Qual. Theory Differ. Equ. 89, 1-19.
[4] Benson, D., Wheatcraft, S. and Meerschaert, M. (2000), Application of a fractional advection dispersion equation, Water Resour. Res. 36, 1403-1412.
[5] Benson, D., Wheatcraft, S. and Meerschaert, M. (2000), The fractional-order governing equation of Lévy motion, Water Resour. Res. 36, 1413-1423.
[6] Bonanno, G. and Molica Bisci, G. (2009), Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl. 2009, 1-20.
[7] Bonanno, G., Rodríguez-López, R. and Tersian, S. (2014), Existence of solutions to boundary-value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal. 3, 717-744.
[8] Chen, J. and Tang, X.H. (2012), Existence and multiplicity of solutions for some fractional boundary value problem via critical point theory, Abstr. Appl. Anal. 2012, 1-12.
[9] Diethelm, K. (2010), The Analysis of Fractional Differential Equation, Springer, Heidelberg.
[10] Drábek, P. and Milota, J. (2007), Methods of Nonlinear Analisis; Applications to Differential equations, Birkhäuser Verlag AG, Basel, Boston, Berlin.
[11] Eggleston, J. and Rojstaczer, S. (1998), Identification of large-scale hydraulic conductivity trends and the influence of trends on contaminant transport, Water Resources Researces, 34, 2155-2168.
[12] Fec̆kan, M., Wang, M. and Zhou, Y. (2011), On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ. 8, 345-361.
[13] Galewski, G. and Molica Bisci, G. (2016), Existence results for one-dimensional fractional equations, Math. Meth. Appl. Sci. 39, 1480-1492.
[14] Gao, Z., Yang, L. and Liu, G. (2013), Existence and uniqueness of solutions to impulsive fractional integro-differential equations with nonlocal conditions, Appl. Math. 4, 859-863.
[15] Guo, L. and Zhang, X. (2014), Existence of positive solutions for the singular fractional differential equations, J. Appl. Math. Comput. 44, 215-228.
[16] Heidarkhani, S. (2014), Multiple solutions for a nonlinear perturbed fractional boundary value problem, Dynamic. Sys. Appl. 23, 317-331.
[17] Heidarkhani, S., Afrouzi, G.A., Ferrara, M., Caristi, G. and Moradi, S. (2018), Existence results for impulsive damped vibration systems, Bull. Malays. Math. Sci. Soc. 41, 1409-1428.
[18] Heidarkhani, S., Afrouzi, G.A., Moradi, S., Caristi, G. and Ge, B. (2016), Existence of one weak solution for p(x)-biharmonic equations with Navier boundary conditions, Zeitschrift fuer Angewandte Mathematik und Physik, 67, 73.
[19] Heidarkhani, S., Ferrara, M. and Salari, A. (2015), Infinitely many periodic solutions for a class of perturbed second-order differential equations with impulses, Acta. Appl. Math. 139, 81-94.
[20] Heidarkhani, S. and Salari, A. (2020), Nontrivial solutions for impulsive fractional differential systems through variational methods, Math. Meth. Appl. Sci. 43, 6529-6541.
[21] Heidarkhani, S., Zhao, Y., Caristi, G., Afrouzi, G.A. and Moradi, S. (2017), Infinitely many solutions for perturbed impulsive fractional differential systems, Appl. Anal. 96, 1401-1424.
[22] Hilfer, R. (2020), Applications of Fractional Calculus in Physics, World Scientific, Singapore.
[23] Jiao, F. and Zhou, Y. (2011), Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl. 62, 1181-1199.
[24] Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. (2006), Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam.
[25] Kong, L. (2013), Existence of solutions to boundary value problems arising from the fractional advection dispersion equation, Electron. J. Diff. Equ., Vol. 2013, No. 106, pp. 1–15.
[26] Lakshmikantham, V., Baĭnov, D.D. and Simeonov, P.S. (1989), Theory of Impulsive Differential Equations, vol. 6 of Series in Modern Applied Mathematics, World Scientific, Teaneck, NJ, USA.
[27] Oldham, K.B. and Spanier, J. (1974), The Fractional Calculus, Academic Press, New York.
[28] Ricceri, B. (2000), A general variational principle and some of its applications, J. Comput. Appl. Math. 113, 401-410.
[29] Risken, H. (1998), The Fokker-Planck Equation, Springer, Berlin.
[30] Rodríguez-López, R. and Tersian, S. (2014), Multiple solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal. 17, 1016-1038.
[31] Samko, S.G., Kilbas, A.A. and Marichev, Q.A. (1993), Fractional Integral and Derivatives: Theory and Applications, Gordon and Breach, Longhorne, PA.
[32] Sun, J. and Chen, H. (2009), Variational method to the impulsive equation with Neumann boundary conditions, Bound. Value Prob. 2009, 316812.
[33] Wang, J., Li, X. and Wei, W. (2012), On the natural solution of an impulsive fractional differential equation of order q in (1,2), Commun. Nonlinear Sci. Numer. Simul. 17, 4384-4394.