[1] Jahanshahi, M., Ahmadkhanlu, A. (2014). On Well-Posed of Boundary Value Problems Including Fractional Order Differential Equation, Asian. Bull. Math., 36, 53-59.
[2] Chu, J., O’Regan, D. (2010). Singular integral equation and applications to conjugate problems, Taiwan. J. Math., 14, 329-345.
[3] Diethelm, K. (2010). The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type: Springer Science & Business Media, 2010.
[4] Dehghan, M., Solution of a partial integro-differential equation arising from viscoelasticity, Inter. J. Comput. Math., 83, 123-129.
[5] Hamlin, D., Leary, R. (1987). Methods for using an integro-differential equation as a model of tree height growth, Can. J. For. Res., 17, 353-356.
[6] Kilbas, A. A., Saigo, M., Saxena, R. K. (2004). Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral. Transform. Spec. Funct., 15, 31-49.
[7] Jahanshahi, S., Babolian, E., Torres, D. F., Vahidi, A. (2015). Solving Abel equations of kind first kind via fractional calculus, J. King. Saud. Univ. Sci., 27, 161-167.
[8] kondo, J. (1991). Integral Equations, Kodansha Tokyo, Clarendon Press Oxford.
[9] Keshavarz, E., Ordokhani, Y. (2019). A fast numerical algorithm based on the Taylor wavelets for solving the fractional integro-differential equations with weakly singular kernels, Math. Methods. Appl. Sci., 42, 4427-4443.
[10] Kanwal, R. P. (2013). Linear integral equations, Springer Science & Business Media.
[11] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J. (2006). Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, 204, Elsevier (North-Holland) Science Publishers, Amsterdam.
[12] Leonard, A., Mullikin, T. W. (1964). An application of singular integral equation theory to a linearized problem in couette flow, Ann. Phys., 30, 235-248.
[13] Makroglou, A. (2003). Integral equations and actuarial risk management: Some models and numerics, Math. Modell. Anal. 8, 143-54.
[14] Nemati, S., Lima, P. (2018). Numerical solution of nonlinear fractional integro-differential equations with weakly singular kernels via a modification of hat functions, Appl. Math. Comput., 327, 79-92.
[15] Nemati, S., Sedaghat, S., Mohammadi, I. (2016). A fast numerical algorithm based on the second kind Chebyshev polynomials for fractional integro-differential equations with weakly singular kernels, J. Comput. Appl. Math., 308, 231-242.
[16] Susahab, D. N., Shahmorad, S., Jahanshahi, M. (2015). Efficient quadrature rules for solving nonlinear fractional integro-differential equations of the Hammerstein type, Appl. Math. Model. 39, 5452-5458.
[17] Peskin, E. N., Daniel, V.(1995). Schroeder, An Introduction to Quantum Field Theory, Perseus Books Publishing, L.L.C.
[18] Sabermahani, S., Ordokhani, Y. (2020). A new operational matrix of Müntz-Legendre polynomials and Petrov Galerkin method for solving fractional Volterra-Fredholm integrodifferential equations, Comput. Methods. . Differ. Equ. 8, 408-423.
[19] Sabermahani, S., Ordokhani, Y., Yousefi, S. A. (2018). Numerical approach based on fractional-order Lagrange polynomials for solving a class of fractional differential equations, Comput. Appl. Math. 37, 3846-3868.
[20] Volterra, V. (1959). Theory of functionals and of integral and integro-differential equations, Dover Publications.
[21] Wang, Y., Zhu, L. (2016). SCW method for solving the fractional integro-differential equations with a weakly singular kernel, Appl. Math. Comput. 275, 72-80.
[22] Zhao, X. Q. (2003). Dynamical systems in population biology: Springer.