[1] Balakrishnan, N. and Aggarwala, R., Progressive censoring: theory, methods, and applications, Birkhäuser, Boston, 2000.
[2] Basak, I., Basak, P. and Balakrishnan, N., On some predictors of times to failure of censored items in progressively censored samples, Comput. Statist. Data Anal., 50 (2006), 1313–1337.
[3] Calabria, R. and Pulcini, G., An engineering approach to Bayes estimation for the Weibull distribution, Microelectron. Reliab., 34 (1994), 789–802.
[4] Calabria, R. and Pulcini, G., Point estimation under asymmetric loss functions for left-truncated exponential samples, Comm. Statist. Theory Methods, 25 (1996), 585–600.
[5] Chen, M. H. and Shao, Q. M., Monte Carlo estimation of Bayesian credible and HPD intervals, J. Comput. Graph. Statist., 8 (1999), 69–92.
[6] Chivers, C., MHadaptive: General Markov chain Monte Carlo for Bayesian inference using adaptive Metropolis-Hastings sampling, R package version 1.1-8, (2015), ”https://CRAN.R-project.org/package=MHadaptive”.
[7] Dey, S. and Dey, T., Statistical inference for the Rayleigh distribution under progressively Type-II censoring with binomial removal, Appl. Math. Model., 38 (2014), 974–982.
[8] Dey, S., Kayal, T. and Tripathi, Y. M., Statistical inference for the weighted exponential distribution under progressive Type-II censoring with binomial removal, Amer. J. Math. Management Sci., 37 (2018), 188–208.
[9] Geweke, J. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments, In Bayesian Statistics 4, Eds. J.M. Bernardo, J.O. Berger, A.P. Dawid and A.F.M. Smith, Clarendon Press, Oxford, UK, (1992), pp. 169–193.
[10] Ghitany, M. E., Al-Mutairi, D. K. and Aboukhamseen, S. M., Estimation of the reliability of a stressstrength system from power Lindley distributions, Comm. Statist. Simulation Comput., 44 (2015), 118–136.
[11] Ghitany, M. E., Al-Mutairi, D. K., Balakrishnan, N. and Al-Enezi, L. J., Power Lindley distribution and associated inference, Comput. Statist. Data Anal., 64 (2013), 20–33.
[12] Hasselman, B., nleqslv: Solve systems of nonlinear equations, R package version 3.3.2, (2018), ”https://CRAN.R-project.org/package=nleqslv”.
[13] Heidelberger, P. and Welch, P. D., A Spectral method for confidence interval generation and run length control in simulations, Commun. ACM, 24 (1981), 233–245.
[14] Heidelberger, P. and Welch, P. D., Adaptive spectral methods for simulation output analysis, IBM J. Res. Dev., 25 (1981), 860–876.
[15] Heidelberger, P. and Welch, P. D., Simulation run length control in the presence of an initial transient, Oper. Res., 31 (1983), 1109–1144.
[16] Joukar, A., Ramezani, M. and MirMostafaee, S. M. T. K., Estimation of P(X > Y ) for the power Lindley distribution based on progressively type II right censored samples, J. Stat. Comput. Simul., 90 (2020), 355–389.
[17] Kerman, J. Neutral noninformative and informative conjugate beta and gamma prior distributions, Electron. J. Stat., 5 (2011), 1450–1470.
[18] Marinho, P. R. D., Bourguignon, M. and Dias, C. R. B., AdequacyModel: Adequacy of probabilistic models and general purpose optimization, R package version 2.0.0., (2016), ”https:// CRAN.Rproject.org/package=AdequacyModel”.
[19] Pak, A. and Dey, S., Statistical inference for the power Lindley model based on record values and inter-record times, J. Comput. Appl. Math., 347 (2019), 156–172.
[20] Plummer, M., Best, N., Cowles, K. and Vines, K., CODA: Convergence diagnosis and output analysis for MCMC, R News, 6 (2006), 7–11.
[21] Plummer, M., Best, N., Cowles, K., Vines, K., Sarkar, D., Bates, D., Almond, R. and Magnusson, A., coda: Output analysis and diagnostics for MCMC, R package version 0.19-4, (2020), ”https://CRAN.R-project.org/package=coda”.
[22] Proschan, F., Theoretical explanation of observed decreasing failure rate, Technometrics, 5 (1963), 375–383.
[23] R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2020.
[24] Raftery, A. E. and Lewis, S. M., Comment: One long run with diagnostics: Implementation strategies for Markov chain Monte Carlo, Statist. Sci., 7 (1992), 493–497.
[25] Raftery, A. E. and Lewis, S. M., Implementing MCMC, In Markov chain Monte Carlo in practice, Eds. W.R. Gilks, S. Richardson, D.J. Spiegelhalter, Chapman and Hall/CRC, Boca Raton, (1996), pp. 115–130.
[26] Ripley, B., Venables, B., Bates, D. M., Hornik, K., Gebhardt, A. and Firth, D., MASS: Support functions and datasets for Venables and Ripley’s MASS, R package version 7.3-53, (2020), ”https://CRAN.R-project.org/package=MASS”.
[27] Robert, C. P. and Casella, G., Monte Carlo statistical methods, 2nd Ed., Springer-Verlag, New York, 2004.
[28] Schruben, L. W., Detecting initialization bias in simulation output, Oper. Res., 30 (1982), 569–590.
[29] Schruben, L. Singh, H. and Tierney, L., A test of initialization bias hypotheses in simulation output, Technical Report 471, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, New York, 1980.
[30] Schruben, L. Singh, H. and Tierney, L., Optimal tests for initialization bias in simulation output, Oper. Res., 31 (1983), 1167–1178.
[31] Shao, J., Mathematical statistics, 2nd Ed., Springer-Verlag, New York, 2003.
[32] Singh, S. K., Singh, U. and Kumar, M., Bayesian estimation for Poisson-exponential model under progressive type-II censoring data with binomial removal and its application to ovarian cancer data, Comm. Statist. Simulation Comput., 45 (2016), 3457–3475.
[33] Singh, S. K., Singh, U. and Sharma, V. K., Expected total test time and Bayesian estimation for generalized Lindley distribution under progressively Type-II censored sample where removals follow the Beta-binomial probability law, Appl. Math. Comput., 222 (2013), 402–419.
[34] Tse, S. K. and Xiang, L., Interval estimation for Weibull-distributed life data under Type II progressive censoring with random removals, J. Biopharm. Statist., 13 (2003), 1–16.
[35] Tse, S. K., Yang, C. and Yuen, H. K., Statistical analysis of Weibull distributed lifetime data under Type II progressive censoring with binomial removals, J. Appl. Stat., 27 (2000), 1033–1043.
[36] Valiollahi, R., Raqab, M. Z., Asgharzadeh, A. and Alqallaf, F. A., Estimation and prediction for power Lindley distribution under progressively type II right censored samples, Math. Comput. Simulation, 149 (2018), 32–47.
[37] Venables, W. N. and Ripley, B. D., Modern applied statistics with S, 4th Ed., Springer-Verlag, New York, 2002.
[38] Wu, C. C., Wu, S. F. and Chan, H. Y. MLE and the estimated expected test time for the two-parameter Gompertz distribution under progressive censoring with binomial removals, Appl. Math. Comput., 181 (2006), 1657–1670.
[39] Yuen, H. K. and Tse, S. K., Parameters estimation for Weibull distributed lifetimes under progressive censoring with random removals, J. Stat. Comput. Simul., 55 (1996), 57–71.