[1] ه. صالح، ف. حسینزاده لطفی، م. رستمی، م. شفیعی، ارزیابی عملکرد و تعیین بازده به مقیاس در تحلیل پوششی داده های شبکه ای}، مجله مدلسازی پیشرفته ریاضی، 1399،
[2] A. Charnes, W.W. Cooper, Programming with linear fractional functional. Nav. Res. Log. 9(3) (1962) 181–185.
[3] A. Charnes, W.W. Cooper, E. Rhodes, Measuring the efficiency of decision making units, Eur. J. Oper. Res. 2 (1978) 429–444.
[4] Y. Chen, Imprecise DEA–Envelopment and multiplier model approaches, Asia–Pac. J. Oper. Res. 24(02) (2007) 279–291.
[5] Y. Chen, J. Du, S.H. David, J. Zhu, DEA model with shared resources and efficiency decomposition, Eur. J. Oper. Res. 207(1) (2010) 339–349.
[6] W.D. Cook , L. Liang, J. Zhu, Measuring performance of two-stage network structures by DEA: a review and future perspective, Omega 38(6) (2010) 423–430.
[7] W.W. Cooper, K.S. Park, G. Yu, IDEA and AR-IDEA: Models for dealing with imprecise data in DEA, Manag. Sci. 45(4) (1999) 597–607.
[8] D.K. Despotis, G. Koronakos, D. Sotiros, Composition versus decomposition in two-stage network DEA: A reverse approach. J. Prod. Anal. 45 (1) (2016) 71–87.
[9] D.K. Despotis, Y.G. Smirlis, Data envelopment analysis with imprecise data, Eur. J. Oper. Res. 140 (2002) 24–36.
[10] R. Färe, S. Grosskopf, Network DEA, Socio-Econ. Plan. Sci. 34 (2000) 35–49.
[11] H. Fukuyama, W.L. Weber, A slacks-based inefficiency measure for a two-stage system with bad outputs, Omega 38 (2010) 398–409.
[12] N. Goker, E.E. Karsak, Two-stage common weight DEA-Based approach for performance evaluation with imprecise data, Socio–Econ. Plan. Sci. (2020), https://doi.org/10.1016/j.seps.2020.100943.
[13] F. Hosseinzadeh Lotfi, M. Navabakhs, A. Tehranian, M. Rostamy-Malkhalifeh, R. Shahverdi, Ranking bank branches with interval data: The application of DEA. Int. Math. Forum 2 (9) (2007) 429–440.
[14] L. Liang, W.D. Cook, J. Zhu, DEA models for two-stage processes: game approach, Nav. Res. Log. 55 (2008) 643–653.
[15] Y. Li, Y. Chen, L. Liang, J. Xie, DEA models for extended two-stage network structure, Omega 40(5) (2012) 611–618.
[16] S. Lim, J. Zhu, Primal-dual correspondence and frontier projections in two-stage network DEA models, Omega 83 (2019) 236–248.
[17] C. Kao and S.N. Hwang, Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan, Eur. J. Oper. Res. 185 (1) (2008) 418–429.
[18] M. Maghbouli, A. Amirteimoori, S. Kordrostami, Two-stage network structures with undesirable outputs: A DEA based approach, Measurement 48 (2014) 109–118.
[19] P. Peykani, E. Mohammadi, R.F. Saen, S.J. Sadjadi, M. Rostamy-Malkhalifeh, Data envelopment analysis and robust optimization: A review, Expert Syst. 37 (2020), https://doi.org/10.1111/exsy.12534.
[20] T.R. Sexton, H.F. Lewis, Two-Stage DEA: An Application to Major League Baseball, J. Prod. Anal. 19 (2003) 227–249.
[21] A.H. Shokouhi, A. Hatami-Marbini, M. Tavana, S. Saati, A robust optimization approach for imprecise data envelopment analysis, Comput. Ind. Eng. 59(3) (2010) 387–397.
[22] Y.M. Wang, J.B. Yang, D.L. Xu, A preference aggregation method through the estimation of utility intervals, Comput. Oper. Res. 32(8) (2005) 2027–2049.
[23] J. Wu, Q. Zhu, X. Ji, J. Chu, L. Liang, Two-stage network processes with shared resources and resources recovered from undesirable outputs, Eur. J. Oper. Res. 251(1) (2016) 182–197.
[24] W. Zhu, Z. Zhou, Interval efficiency of two-stage network DEA model with imprecise data, INFOR: Inf. Syst. Oper. Res. 51(3) (2013) 142–150.