[1] Alizadeh Noughabi, R., & Alizadeh Noughabi, H., & Ebrahimi Moghaddam Behabadi, A., (2014) . An entropy test for the Rayleigh distribution and power comparison. Journal of Statistical Computation and Simulation, 84 , 151-158 .
[2] Anderson, T.W., & Darling, D.A., (1954) . A test of goodness of fit. Journal of American Statistical Association, 49 , 765-769 .
[3] Arizono, I., & Ohta, H., (1989) . A test for normality based on Kullback-Leibler information. The American Statistician, 43 , 20-22 .
[4] Balakreshnan, N., & Rad, A.H., & Arghami, N.R., (2007) . Testing exponentiality based on Kullback-Leibler information with peogressively Type-II censored data. IEEE Transactions on Reliability, 56 , 349-356 .
[5] Baratpour, S., & Khodadadi, F., (2012) . A cumulative residual entropy characterization of the Rayleigh distribution and related goodness-of-fit test. Journal of Statistical Research of Iran, 9 , 115-131 .
[6] Baratpour, S., & Rad, A.H., (2012) . Testing goodness-of fit for exponential distribution based on cumulative residual entropy. Communications in Statistics Theory and Methods, 41 , 1387-1396 .
[7] Caroni, C., (2002) . The correct ball bearing data. Lifetime Data Analysis, 8 , 395-399 .
[8] Ciumara, R., & Panait, I.I., (2018) . On Generalized Cumulative Information of Kullback-Leibler Type. Order, 2 , 1 .
[9] Di Crescenzo, A., & Longobardi, M., (2009) . On cumulative entropies. Journal of Statistical Planning and Inference, 139 , 4072-4087 .
[10] Jahanshahi, S.M.A., & Habibi Rad, A., & Fakoori, V., (2016) . A goodness of fit test Rayleigh distribution based on Hellinger distance. Annals of Data Science, 3 , 401-411 .
[11] Khorashadizadeh, M., (2018) . More results on dynamic cumulative inaccuracy measure. JIRSSJournal of The Iranian Statistical Society, 17(1) , 89-108 .
[12] Khorashadizadeh, M., & Roknabadi, A.R., & Borzadaran, G.M., (2016) . Discrete dynamic cumulative residual entropy. International Journal of Reliability and Safety, 10(3) , 210-226 .
[13] Kolmogorov, A.N., (1933) . Sulla Determinazione Empirica di une legge di Distribuzione. Giornale dell’Intituto Italiano degli Attuari, 4 , 83-91 .
[14] Kullback, S., (1959) . Information Theory and Statistics. Wiley, NY.
[15] Kuiper, N.H., (1960) . Tests concerning random points on a circle. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series A, 63 , 38-47 .
[16] Meintanis, S., & Iliopoulos, G., (2003) . Test of fit for the Rayleigh distribution based on the empirical Laplace transform. Annals of the Institute of Statistical Mathematics, 55 , 137-151 .
[17] Navarro, J., & Aguila, Y., & Asadi, M., (2010) . Some new result on the cumulative residual entropy. Journal of Statistical Planning and Inference, 140 , 310-322 .
[18] Park, S., & Noughabi, H.A., & Kim, I., (2018) . General cumulative Kullback-Leibler information. Communications in Statistics-Theory and Methods, 47(7) , 1551-1560 .
[19] Park, S., & Rao, M., & Shin, D.W., (2012) . On cumulative residual Kullback-Leibler information. Statistics and Probability Letters, 82 , 2025-2032 .
[20] Park, S., & Pakyari, R., (2015) . Cumulative residual Kullback-Leibler information with the progressively Type-II censored data. Statistics and Probability Letters, 106 , 287-294 .
[21] Rao, M., & Chen, Y., & Vemuri, B.C., & Wang, F., (2004) . Cumulative residual entropy: a new measure of information. IEEE Transactions on Information theory, 50 , 1220-1228 .
[22] Safavinejad, M., & Jomhoori, S., & Alizadeh Noughabi, H., (2015) . A devsity based empirical likelihood ratio goodness of fit test for the Rayleigh distribution and power comparison. Jornal of Statistical Computation and Simulation, 85 , 3322-3334 .
[23] Shannon, C.E., (1948) . A Mathematical of Communication. Bell System Technical Journal, 27 , 379-423 .
[24] Sunoj, S.M., & Sankaran, P.G., & Unnikrishnan Nair, N., (2018) . Quantile-based cumulative Kullback-Leibler divergence. Statistics, 52(1) , 1-17 .
[25] Watson, G.S., (1961) . Goodness of fit tests on a circle. Biometrika, 48 , 109-114 .
[26] Zohrevand, Y., & Hashemi, R., & Asadi, M., (2020) . An adjusted cumulative Kullback-Leibler information with application to test of exponentiality. Communications in Statistics-Theory and Methods, 49(1) , 44-60 .