نوع مقاله : مقاله پژوهشی
نویسنده
گروه ریاضی، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد تهران جنوب، تهران، ایران
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسنده [English]
Ranking of efficient two-stage decision-making units (DMUs) is one of the most important issues in network data envelopment analysis (DEA), which hitherto many methods have been presented in this context. However, each of these methods has at least one of these drawbacks: Non-linearity, High computational complexity, Lack of distinction between strong and weak efficient two-stage DMUs, Measuring different efficiencies for each of two-stage DMUs, Failure to consider the internal structures of two-stage DMUs in calculating efficiency and ranking them, and Assigning the same ranks to the efficient two-stage DMUs. Hence, to tackle these problems, this study proposes a network DEA-based method to rank the extremely efficient two-stage DMUs with a series structure. The proposed method is based on eliminating these efficient two-stage DMUs from the reference set and evaluating the efficiency of inefficient two-stage DMUs using the Euclidean norm. Finally, two numerical and empirical examples are presented to illustrate the use of the proposed method.
کلیدواژهها [English]
7. معمارپور، مهدی؛ واعظی، احسان؛ نجفی، سید اسماعیل. (1395). ارزیابی عملکرد و رتبهبندی کارایی شعب شهر تهران با استفاده از رویکرد تحلیل پوششی دومرحلهای و تکنیک رتبهبندی بردا. فصلنامه مهندسی تصمیم، ۲، ۱۰۶- ۸۵.
[8] Amirteimoori A., Jahanshahloo G.R. and Kordrostami, S., Ranking of decision making units in data envelopment analysis: A distance-based approach, Appl. Math. Comput. 171(1) (2005) 122-135.
[9] Andersen P. and Petersen N.C., A procedure for ranking efficient units in data envelopment analysis, Manag. Sci. 39(10) (1993) 1261-1294.
[10] Banker R.D., Charnes A. and Cooper W.W., Some models for estimating technical and scale inefficiencies in data envelopment analysis, Manag. Sci. 30 (1984) 1078-1092.
[11] Charnes A., Cooper W.W. and Rhodes E., Measuring the efficiency of decision making units, Eur. J. Oper. Res. 2(6) (1978) 429-444.
[12] Cooper W.W., Seiford L.M. and Tone K., Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEASolver Software, Second ed., Springer Science+Business Media, New York
(2007).
[13] Despotis D.K., Sotiros D. and Koronakos G., A network DEA approach for series multi-stage processes, Omega 61 (2016) 35-48.
[14] Färe R. and Grosskopf S., Network DEA, Socio-Econ. Plan. Sci. 34(1) (2000) 35-49.
[15] Guo D. and Wu J., A complete ranking of DMUs with undesirable outputs using restrictions in DEA models, Math. and Comput. Model. 58(5-6) (2013) 1102-1109.
[16] Hosseinzadeh Lotfi F., Noora A.A., Jahanshahloo G.R. and Reshadi M., One DEA ranking method based on applying aggregate units, Expert Syst. with Appl. 38(10) (2011) 13468-13471.
[17] Jahanshahloo G.R., Hosseinzadeh Lotfi F., Khanmohammad M., Kazemimanesh M. and Rezaie V., Ranking of units by positive ideal DMU with common weights, Expert Syst. with Appl. 37(12) (2010) 7483-7488.
[18] Jahanshahloo G.R., Hosseinzadeh Lotfi F., Rezaie V. and Khanmohammadi M., Ranking DMUs by ideal points with interval data in DEA, Appl. Math. Model. 35(1) (2011) 218-229.
[19] Jahanshahloo G.R., Hosseinzadeh Lotfi F., Shahverani R., Adabitabar M. and Sohraiee S., Ranking DMUs by l1-norm with fuzzy data in DEA, Chaos, Solitons & Fractals 39(5) (2009) 2294-2302.
[20] Jahanshahloo G.R., Junior H.V., Hosseinzadeh Lotfi F. and Akbarian D., A new DEA ranking system based on changing the reference set, Eur. J. Oper. Res. 181(1) (2007) 331-337.
[21] Jahanshahloo G.R., Memariani A., Hosseinzadeh Lotfi F. and Rezai, H.Z., A note on some of DEA models and finding efficiency and complete ranking using common set of weights, Appl. Math. Comput. 166(2) (2005)
265-281.
[22] Jahanshahloo G.R., Sanei M., Hosseinzadeh Lotfi F. and Shoja N., Using the gradient line for ranking DMUs in DEA, Appl. Math. Comput. 151(1) (2004) 209-219.
[23] Kanematsu S.Y., Carvalho N.P., Martinhon C.A. and Almeida M.R., Ranking using η-efficiency and relative size measures based on DEA, Omega 90 (2020) 101984.
[24] Liu X., Chu J., Yin P. and Sun J., DEA cross-efficiency evaluation considering undesirable output and ranking priority: a case study of ecoefficiency analysis of coal-fired power plants, J. Cleaner Prod. 142 (2017) 877-885.
[25] Li S., Jahanshahloo G.R. and Khadabakhshi, M., A super-efficiency model for ranking efficient units in data envelopment analysis, Appl. Math. Comput. 184(2) (2007) 638-648.
[26] Mehrabian S., Alirezaei M.R. and Jahanshahloo G.R., A complete efficiency ranking of decision making units; an application to the teaches training university, Comput. Opt. Appl. 14 (1999) 261-266.
[27] Oukil A., Ranking via composite weighting schemes under a DEA crossevaluation framework, Comput. & Ind. Eng. 117 (2018) 217-224.
[28] Oukil A. and Amin G.R., Maximum appreciative cross-efficiency in DEA: A new ranking method, Comput & Ind. Eng. 81 (2015) 14-21.
[29] Oral M., Kettani O. and Lang P., A methodology for collective evaluation and selection of industrial R&D projects, Manag. Sci. 7(37) (1991) 871-883.
[30] Ruiz J.L. and Sirvent I., Common benchmarking and ranking of units with DEA, Omega 65 (2016) 1-9.
[31] Sexton T.R., Silkman R.H. and Hogan A.J., Data envelopment analysis: Critique and extensions, In: Silkman R.H. (Ed.), Measuring Efficiency: An Assessment of Data Envelopment Analysis, Jossey-Bass, San Francisco,
CA (1986) 73-105.
[32] Torgersen A.M., Forsund F.R. and Kittelsen S.A.C., Slack-adjusted efficiency measures and ranking of efficient units, J. Prod. Anal. 7 (1996) 379-398.