On the existence of solutions for fractional integral equations by measure of non-compactness in Banach space

Document Type : Original Paper

Author

Department of Mathematics, Ashtian Branch, Islamic Azad University, Ashtian, Iran

Abstract

‎In this paper‎, the existence of the solutions of a class of fractional integral equations in

Banach algebra, are investigated. The main tools here

are the technique of the measure of noncompactness and the Petryshyn's fixed point theorem. ‎Also‎, ‎for the applicability of the obtained results‎, ‎some‎ examples are given‎.

Keywords

Main Subjects


[1] Samko S.G., A.A. Kilbas and Marichev O.I. , Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science, Yverdon, Switzerland, 1993.
[2] Saxena R.K. and Kalla S.L. , On a fractional generalization of free electron laser equation, Appl. Math. Comput., 143 (2003), 89-97.
[3] Abbas S. , Benchohra M. and Henderson J., On global asymptotic stability of solutions of nonlinear quadratic Volterra integral equations of fractional order, Commun. Appl. Nonlinear Anal., 19 (2012), 79-89.
[4] Mishra L. N. , Sen M. and Mohapatra R. N. , On existence theorems for some generalized nonlinear functional-integral equations with applications, Filomat, 31(7)(2017), 2081-2091.
[5] Das A. ,Hazarika B. and Kumam P. , Some new generalization of Darbo’s fixed point theorem and its applications on integral equations, Mathematics, 7(3) (2019), 214.
[6] Deep A. , Deepmala, Roshan J. R., Nisar K. S. and Abdeljawad T. , An extension of Darbo’s fixed point theorem for a class of system of nonlinear integral equations, Adv. Differ. Equ., 483, (2020), 1-17.
[7] Rabbani M. , Das A. , Hazarika B. and Arab R. , Existence of solution for two dimensional non-linear fractional integral equation by measure of noncompactness and iterative algorithm to solve it, J. Comput. App. Math. 370, 112654, (2020), 1-17.
[8] Rabbani M. and Deep A. , On some generalized non-linear functional integral equations of two variables via measures of noncompactness and numerical method to solve it, Math. Sci. (2021), 1-8.
[9] Mishra L. N. and Sen M., On the concept of existence and local attractivity of solutions for some quadratic Volterra integral equation of fractional order, Appl. Math. Comput., 285(2016), 174-183.
[10] Banas J. and ORegan D. , On existence and local attractivity of solutions of a quadratic Volterra integral equation of fractional order, J. Math. Anal. Appl. 345 (2008), 573-582.
[11] Aghajani A. , Banaś J. and Jalilian Y. , Existence of solutions for a class of nonlinear Volterra singular integral equations, Comput. Math. Appl., 62(3) (2011), 1215-1227.
[12] Darwish M. A. , On quadratic integral equation of fractional orders, J. Math. Anal. Appl. 311 (2005), 112-119.
[13] Banas J. , Rzepka E., Monotonic solutions of a quadratic integral equation of fractional order, J. Math. Anal. Appl. 322 (2007), 1371-1379.
[14] Banas J. , Zajac T., A new approach to the theory of functional integral equations of fractional order, J. Math. Anal. Appl. 375 (2011), 375-387.
[15] Derakhshan M. , Jahanshahi M. and Kazemi Demneh H., Investigation the boundary and initial value problems including fractional integro-differential equations with singular kernels, Journal of Advanced Mathematical Modeling, 11(1), (2021), 97-108.
[16] Petryshyn W. V., Structure of the fixed points sets of k-set-contractions, Arch. Rational Mech. Anal. 40 (1970/1971), 312-328.
[17] Banaś J. , Goebel K., Measures of noncompactness in Banach spaces, volume 60 of Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1980.
[18] Kazemi M. and Ezzati R., Existence of solution for some nonlinear two-dimensional volterra integral equations via measures of noncompactness, Appl. Math. Comput., 275 (2016), 165-171.
[19] Kazemi M. and Ezzati R., Existence of solutions for some nonlinear Volterra integral equations via Petryshyn’s fixed point theorem, Int. J. Anal. Appl. 9(2018), 1-12.
[20] Rabbani M. and Deep A., On some generalized non-linear functional integral equations of two variables via measures of noncompactness and numerical method to solve it, Math. Sci. (2021), 1-8.
[21] Ramezani M., Baghani H., Ege O. and De la Sen M., A New Version of Schauder and Petryshyn Type Fixed Point Theorems in S-Modular Function Spaces, Symmetry 12(1) (2020), 15.
[22] Maleknejad K. , Nouri K. , and Mollapourasl R. , Existence of solutions for some nonlinear integral equations, Commun. Nonlinear Sci. Numer. Simul., 14(6) (2009), 2559-2564.
[23] Maleknejad K. , Nouri K. , and Mollapourasl R. , Investigation on the existence of solutionsfor some nonlinear functional-integral equations, Non. Anal. 71 (2009), 1575-1578 .
[24] Kuratowski K. , Sur les espaces completes. Fund. Math. 15 (1934), 301-335.
[25] Goldenstein L. S. and Markus A. S., On the measure of non-compactness of bounded sets and of linear operators, In Studies in Algebra and Math. Anal. (Russian), pages 45–54. Izdat. “Karta Moldovenjaske”, Kishinev, 1965.
[26] Nussbaum R. D. , The fixed-point index and fixed point theorem for k-set contractions, ProQuest LLC, Ann Arbor, MI, 1969. Thesis (Ph.D.)–The University of Chicago.
[27] Singh S. , Watson B. , and Srivastava P. , Fixed point theory and best approximation: the KKM-map principle, volume 424 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 1997.
[28] Chandrasekhar S. , Radiative Transfer, Oxford Univ. Press, London, 1950.
[29] Argyros I. K., Quadratic equations and applications to Chandrasekhar’s and related equations, Boll. Austral. Math. Soc. 32 (1985) 275- 292.
[30] Bana´s J. , Lecko M. and El-Sayed W. G., Existence theorems of some quadratic integral equations, J. Math. Anal. Appl. 222 (1998) 276-285.
[31] Hu S. , Khavani M. and Zhuang W. , Integral equations arising in the kinetic theory of gases, Appl. Anal. 34 (1989) 261-266.
[32] Kelley C. T. , Approximation of solutions of some quadratic integral equations in transport theory, J. Integr. Equ., 4(1982), 221-237.
[33] Deimling K. , Nonlinear Functional Analysis, Springer- Verlag, Berlin, 1985.
[34] Appell J. , De Pascale E. and Vignoli A. , Nonlinear spectral theory, de Gruyter, 2008.
[35] Chiappinelli R., An application of Ekeland’s variational principle to the spectrum of nonlinear homogeneous gradient operators, J. Math. Anal. Appl., 340(1)(2008), 511–520.
[36] Giorgieri E. , Appell J. and Väth M., Nonlinear spectral theory for homogeneous operators, Nonlinear Funct. Anal. Appl., 7(4)(2002), 589–618.