[1] نتایج آمارگیری نیروی کار ، ( ١٣٩٢ )، تهران، مرکز آمار ایران.
[2] Branscum, A.J., Johnson, W.O. and Thurmond, M. (2007), Baysian Beta Regression Applications toHoushold Expenditure Data and Genetic Distance Between Food and Mouth Dieseas Viruses, Australian& New Zealand Journal of Statistics, 49, 287-301.
[3] Bonat, W.H., Ribeiro, P.J. and Zeviani, W.M. (2013), Likelihood Analysis for a Class of Beta Mixed,
Models Cornell University Library, arXiv Preprint arXiv: 1312.2413.
[4] Cepeda, E. D., and Gamerman, D. (2005), Bayesian Methodology for Modeling Parameters in the TwoParameter ExponentialF amily, Revista Estadística, 57, 168-169.
[5] Cepeda, E. .D, Migon, H. S., Garrido, L. and Achcar, J. A. (2014), Generalized Linear Models with
Random Effects in the Two-ParameterE xponentialF amily, Journal of Statistical Computation and
Simulation, 84, 513-525.
[6] Carlin, B. P. and Louis, T. A. (2008), Bayesian Methods for Data Analysis, Mineapolis, CRC Press.
[7] Ferrari, S. and Cribari, F. (2004), Beta Regression for Modelling Rates and Proportions, Journal ofApplied Statistics,31, 799-815.
[8] Figueroa-Zúñiga, J. I., Arellano-Valle, R. B. and Ferrari, S. L. (2013), Mixed Beta Regression: ABayesian Perspective, Computational Statistics & Data Analysis,61, 137– 147.
[9] Fallah Mohsenkhani, Z., Mohammadzadeh, M. and Baghfalaki, T. (2019), Augmented Mixed BetaRegression Models with Skew-Normal Independent Distributions: Bayesian Analysis of Labor ForceData, Communications in Statistics-Simulation and Computation,Volume 48, Issue 7, 2147-2164.[10] Fong, Y., Rue, H. and Wakefield, J. (2010), Bayesian Inference for Generalized Linear Mixed Models,Biostatistics, 11, 397-412.
[11] Galvis, M. D., Dipankar, B. and Victor, H. L. (2014), Augmented Mixed Beta Regression Models forPeriodontal Proportion Data, Preprinted, (In Press), Statistics in Medicine.
[12] Gelman, A., Rubin, D. B., (1992). Inference from Iterative Simulation Using Multiple Sequences,
Statistical Science7, 457–511.
[13] Gelfand, A. E. and Dey, D. K. (1994), Bayesian Model Choice: Asymptotics and Exact Calculations,Journal of the Royal Statistical Society, Series B (Methodological), 501-514.
[14] Heidelberger, P. and Welch, P. D. (1981), A Spectral Method for Confidence Interval Generation andRun Length Control in Simulations, Communications of the ACM, 24, 233-245.
[15] Nogarotto, D, Azevedo, C, Bazan, J.Bayesian (2020), modeling and prior sensitivity analysis for
zero–one augmented beta regression models with an application to psychometric data, Brazilian Journalof Probability and Statistics, 304-322.
[16] Ospina, R. and Ferrari, S. L. (2010), Inflated Beta Distributions, Statistical Papers. 51,111- 126.
[17] Paolino, P. (2001), Maximum Likelihood Estimation of Models with Beta-Distributed DependentVariables, Political Analysis, 9, 325-346.
[18] Parker, A, Bandyopadhyay, D and Slate, E. (2014), A spatial augmented beta regression model forperiodontal proportion data, Statistical Modelling, vol. 14, 503-521.
[19] Smithson, M. and Verkuilen, J. (2006), A Better Lemon Squeezer? Maximum-Likelihood Regressionwith Beta-Distributed Dependent Variables, Psychological Methods, 11, 54-71.
[20] Verkuilen, J. and Smithson, M. (2012), Mixed and Mixture Regression Models for Continuous
Bounded Responses Using the Beta Distribution, Journal of Educational and Behavioral Statistics,
37,82-113.[21] Zimprich, D. (2010), Modeling Change in Skewed Variables Using Mixed Beta Regression Models,Research in Human Development, 7, 9-26.