نیم شبه حلقه های شبه منظم راست ( چپ )

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه ریاضی، دانشگاه آزاد اسلامی، واحد قزوین، قزوین، ایران

2 دانشکده ریاضی، دانشگاه خواجه نصیرالدین طوسی، تهران، ایران

چکیده

در این مقاله عناصر شبه منظم راست ( چپ) در یک نیم شبه حلقه به عنوان تعمیمی از عناصر منظم و قویا منظم معرفی گردیده است. همچنین در ادامه، ضمن بررسی خواص عناصر نیم شبه حلقه های شبه منظم، ارتباط بین عناصر کاهیده و قویا کاهیده و خواص این عناصر ارائه می‌شود

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Right (left) nearregular seminearrings

نویسندگان [English]

  • zhaleh shamsi 1
  • shaban ghalandarzadeh 2
  • parastoo malakootirad 1
1 Department of mathematics, Qazvin Branch, Islamic Azad University, Qazvin, Iran
2 Faculty of Mathematics, K. N. Toosi University of Technology, Tehran, Iran
چکیده [English]

In this paper, as a generalization of regular and strongly regular elements of a semi near rings, we introduce the Concept of ( left ) right near regular elements. In the following, we investigate some properties of near regular semi near rings and presents the connection between reduced and strongly reduced elements.

کلیدواژه‌ها [English]

  • (Left) Right Near - Regular
  • (Left) Right Near-Idempotent
  • Symmetric Near-Idempotent
  • Strongly Reduced
[1] Cho Y. U. and Hirano Y., Strong reducedness and strong regularity for near-rings, Kyungpook Math.J, 43 (2003) 587-592.
[2] Ferrero G., Nearrings: some developments linked to semigroups and groups, Springer Science andBusiness Media (2013).
[3] Golan J. S., Semirings and their Applications, Springer Science and Business Media (2013).
[4] Goodearl K. R., Von Neumann regular rings, London, Pitman (1979).
[5] Mason G., Strongly regular near-rings, Proceedings of the Edinburgh Mathematical Society, 231(1980) 27-35.
[6] Pilz G., Near-rings, the theory and its applications, Elsevier (2011).
[7] Reddy Y. V. and Murty C. V. L. N., On strongly regular near-rings, Proceedings of the Edinburgh
Mathematical Society, 271 (1984) 61-64.
[8] Sardar S. K. and Mukherjee R., On additively regular seminearrings, In Semigroup Forum, SpringerUS, 883 (2014) 541-554.
[9] Satyanarayana B. and Prasad K. S., Near rings, fuzzy ideals, and graph theory, Chapman and
Hall/CRC. (2013).