[1] Abuhamdah, A., Ayob, M., Kendall, G., and Sabar, N. R., Population based local search for universitycourse timetabling problems, Appl. Intell., 40 (2014), 44-53.
[2] Akkan, C. and Gülcü, A., A bi-criteria hybrid genetic algorithm with robustness objective for the
course timetabling problem, Comput. Oper. Res., 90 (2018), 22-32.
[3] Assi, M., Halawi, B., and Haraty, R. A., Genetic algorithm analysis using the graph coloring method
for solving the university timetable problem, Procedia. Comput. Sci., 126 (2018), 899-906.
[4] Aziz, N. L. A. and Aizam, N. A. H., A survey on the requirements of university course timetabling,World Acad. Sci. Eng. Technol. Int. J. Math. Comput. Phys. Electr. Comput. Eng., 10 (2016), 236-241.[5] Bagger, N. C. F., Desaulniers, G., and Desrosiers, J., Daily course pattern formulation and valid inequalitiesfor the curriculum-based course timetabling problem, J. Sched., 22 (2019), 155-172.[6] Budiono, T. A. and Wong, K. W., A pure graph coloring constructive heuristic in timetabling, in Proc.Int. Conf. Comput. Inf. Sci. (ICCIS), (2012), 307-312.
[7] Burke, E. K. and Petrovic, S., Recent research directions in automated timetabling, Eur. J. Oper. Res.,140 (2002), 266-280.[8] Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., and Qu, R., A graph-based hyper-heuristic foreducational timetabling problems, Eur. J. Oper. Res., 176 (2007), 177-192.[9] Chen, R. M. and Shih, H. F., Solving university course timetabling problems using constriction particleswarm optimization with local search, Algorithms, 6 (2013), 227-244.
[10] Chen, M. C., Sze, S. N., Goh, S. L., Sabar, N. R. and Kendall, G., A survey of university course
timetabling problem: perspectives, trends and opportunities, IEEE. Access., 9 (2021), 106515-
106529.[11] Feng, X., Lee, Y., and Moon, I., An integer program and ahybrid genetic algorithm for the universitytimetabling problem, Optim. Methods. Softw., 32 (2017), 625-649.
[12] Goh, S. L., Kendall, G., and Sabar, N. R., Simulated annealing with improved reheating and learningfor the post enrolment course timetabling problem, J. Oper. Res. Soc., 70 (2019), 873-888.
[13] Goh, S. L., Kendall, G., Sabar, N. R., and Abdullah, S., An effective hybrid local search approach
for the post enrolment course timetabling problem, Opsearch., 57 (2020), 1131-1163.
[14] Gotlieb, C., The construction of class-teacher timetables, in Proc. IFIP Congress, 62 (1963), 73-77.[15] Gunawan, A., Ng, K. M., and Poh, K. L., A hybridized lagrangian relaxation and simulated annealingmethod for the course timetabling problem, Comput. Oper. Res., 39 (2012), 3074-3088.
[16] Habashi, S. S., Salama, C., Yousef, A. H., and Fahmy, H. M., Adaptive diversifying hyper-heuristicbased approach for timetabling problems, in Proc. IEEE 9th Annu. Inf. Technol., Electron. MobileCommun. Conf. (IEMCON), (2018), 259-266.
[17] Lindahl, M., Mason, A. J., Stidsen, T., and Sørensen, M., A strategic view of university timetabling,Eur. J. Oper. Res., 266 (2018), 35-45.
[18] Nagata,Y., Random partial neighborhood search for the post-enrollment course timetabling problem,Comput. Oper. Res., 90 (2018), 84-96.
[19] Nothegger, C., Mayer, A., Chwatal, A., and Raidl, G. R., Solving the post enrolment course
timetabling problem by ant colony optimization, Ann. Oper. Res., 194 (2012), 325-339.
[20] Oktavia, M., Aman, A., and Bakhtiar, T., Courses timetabling problem by minimizing the number ofless preferable time slots, IOP Conf. Ser.: Mater. Sci. Eng. 166 (2017), 012025.
[21] Sabar, N. R., Ayob, M., Kendall, G., and Qu, R., A honey-bee mating optimization algorithm for
educational timetabling problems, Eur. J. Oper. Res., 216 (2012), 533-543.
[22] Song, T., Liu, S., Tang, X., Peng, X., and Chen, M., An iterated local search algorithm for the
university course timetabling problem, Appl. Soft. Comput., 68 (2018), 597-608.
[23] Teoh, C. K., Wibowo, A., and Ngadiman, M. S., Review of state of the art for metaheuristic techniquesin academic scheduling problems, Artif. Intell. Rev., 44 (2015), 1-21.
[24] Turabieh, H., Abdullah, S., McCollum, B., and McMullan, P., Fish swarm intelligent algorithm forthe course timetabling problem, in Rough Set and Knowledge Technology, (2010), 588-595.
[25] Wang, B., Geng, Y., and Zhang, Z., Applying genetic algorithm to university classroom arrangementproblem, J. Phys. Conf. Ser., 1325 (2019), 012157.