[1] M. S. Andersen, and P. C. Hansen, Generalized row-action methods for tomographic imaging, NumericalAlgorithms. 7(1) (2014) 121–144.[2] K. E. Atkinson, An introduction to numerical analysis, 2sd edn, John Wiley & Sons, 1987.[3] A.B. Bakushinskii, Remarks on choosing a regularization parameter using the quasioptimality andratio criterion, USSR Computational Mathematics and Mathematical Physics. 24(4) (1984) 181–182.
[4] Å. Björck, Numericla Methods in Matrix Computations, Springer, 2015.
[5] E. Boy, Regularization of inverse problems by the landweber iteration, Masters’ thesis, 2019.
[6] R. N. Bracewell, Two-Dimensional Imaging, Prentice Hall, 1995.
[7] W. L. Briggs and V. E. Henson, The DFT - An Owner’s Manual for the Discrete Fourier Transform,
SIAM, 1995.[8] Y. Censor, and T. Elfving, Block-iterative algorithms with diagonally scaled oblique projections for thelinear feasibility problem, SIAM Journal on Matrix Analysis and Applications. 24(1) (2002) 40–58.[9] M. Defrise, C. De Mol and P. C. Sabatier, A note on stopping rulesforiterative regularization methodsand filtered SVD, Inverse Problems : An interdisciplinary Study ed P CSabatier. (1987) 261–268.
[10] T. Elfving, T. Nikazad, Stopping rules for Landweber-type iteration, Inverse Problem. 23(4) (2007)1417–1432.
[11] T. Elfving, T. Nikazad, Properties of a class of block-iterative methods, Inverse Problem. 25(11)
(2009), 115011.[12] T. Elfving, T. Nikazad, and C. Popa. A class of iterative methods: semi-convergence, stopping rules,inconsistency, and constraining. In Y. Censor, M. Jiang, and G. Wang, editors, Biomed-ical Mathematics:Promising Directions in Imaging, Therapy Planning, and Inverse Problems.Medical PhysicsPublishing, Madison, WI. (2010) 157–184.
[13] T. Elfving,P. C. Hansen and T. Nikazad , Semi-convergence properties of Kaczmarz’s method, InverseProblems. 30(5) (2014) 055007.
[14] T. Elfving, T. Nikazad And P. C. Hansen, Semi-convergence and relaxation paremeters for a class ofSIRT algorithms, ETNA. 37(274) (2010) 321–336.
[15] T. Elfving, P. C. Hansen,T. Nikazad, Semi-convergence and relaxation paremeters for Projected SIRTalgorithms, SIAM Journal on Scientific Computing. 34(4) (2017) A2000–A2017.
[16] H. W. Engl, M. Hanke, and .A Neubauer, Regularization of inverse problems, Springer Science &Business Media, 2000.[17] S. Gazzola,Y. Wiaux , Fast nonnegative least squares through flexible Krylov subspaces. SIAM Journalon Scientific Computing. 39(2) (2017) A655–A679.
[18] J. D. Gibson, A. Bovik, Handbook of Image and Video Processing,Academic press, 2000.
[19] M. S. Gockenbach, Linear Inverse Problems and Tikhonov Regularization, 32, American MathematicalSoc, 2016.
[20] J. Hadamard, Lectures on Cauch’s Problem in Linear Partial Differenctal Equations, Yale UniversityPress, 1923.
[21] P. C. Hansen , Analysis of discrete ill-posed problems by means of the L-curve, SIAM review. 34(4)(1992) 561–580.
[22] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problem, numerical aspects of linear inversion,SIAM. Philadelphia, 1998.
[23] P. C. Hansen, M. Saxild-Hansen, AIRTools- a MATLAB package of algebraic iterative reconstructionmethods Journal of Computational and Applied Mathematics. 236(8) (2012) 2167–78.[24] G. T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from Projections,Springer, 2009.
[25] M. R. Hestenes and E. Stiefel, Methods of Conjugate Gradient for Solving Linear Systemsw, J. Res.Nat. Bur. Standards, 49(1) Washington, DC: NBS, (1952).
[26] A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, SIAM, 2001.
[27] J. S. Lim, Two-Dimensional Signal and Image Processing, Englewood Cliffs, 1990.
[28] V. A. Morozov and M. Stessin, Regularization methods for ill-posed problems, CRC press Boca
Raton, FL, 1993.[29] F. Natterer, The Mathematics of Computerized Tomography,John Wiley & Sons Ltd, 2001.[30] D. Needell, J. A. Tropp, Paved with good intentions: analysis of randomized block Kaczmarz method, Linear Algebra Appl. 441 (2014) 199–221.
[31] T. Nikazad, M. Karimpour, Controlling noise error in block iterative methods, Numerical Algorithms.73(4) (2016) 907–925.
[32] T. Nikazad, M. Abbasi and T. Elfving, Error minimizing relaxation strategies in Landweber and
Kaczmarz type iterations, Journal of Inverse and Ill-posed Problems. 25(1) (2017) 35–56.
[33] T. Nikazad, M. Karimpour, and M. Abbasi, Notes on flexible sequential block iterative methods,Computers & Mathematics with Applications. 76(6) (2018) 1321–1332.
[34] T. Nikazad, R. Davidi, G. T. Herman, Accelerated perturbation-resilient block-iterative projectionmethods with application to image reconstruction, Inverse Problems. 28(3) (2012) 035005.[35] T. Nikazad, M. Abbasi, Perturbation-resilient iterative methods with an infinite pool of mappings,SIAM J. Numerical Analysis. 53 (1) (2015) 390–404.
[36] T. Nikazad, M. Abbasi, L. Afzalipour,T. Elfving, A new step size rule for the superiorization methodand its application in computerized tomography, Numerical Algorithms. (2021) 1–25.
[37] Y. Saad, Iterative Methods for Sparse Linear System, PWS Publishing Company, 1996.
[38] J. Semmlow, Circuits, signals and systems for bioengineers: A MATLAB-based introduction AcademicPress, 2017.
[39] I. Tomba, Iterative regularization methods for ill-posed problems, PHD thesis, 2013.
[40] M.V. W. Zebetti, C. Lin and G. T. Herman, Total variation superiorized conjugate gradient methodfor image reconstruction, Inverse Problems. 34(3) (2018) 034001.