نوع مقاله : اصیل
نویسنده
گروه ریاضی، دانشکده علوم ریاضی، دانشگاه شهید بهشتی، تهران، ایران
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسنده [English]
Let $EuScript{H}$ be a Complex Hilbert space and $EuScript{B(H)}$ be the algebra of all
bounded linear operators on $EuScript{H}$. The non-commuting graph of $EuScript{B(H)}$, denoted by $mathnormal{Gamma}(EuScript{B(H)})$ is a graph whose vertices are non-scalar bounded operators and two distinct vertices $A$ and $B$ are adjacent if and only if $AB neq BA$. In this paper, we prove the connectivity of $mathnormal{Gamma}(EuScript{B(H)})$ for separable and non-separable complex Hilbert spaces. Also we show that the noncommuting graphs of the set of all finite rank operators on $EuScript{H}$, the set of all compact operators on $EuScript{H}$, the set of all non-invertible operators on $EuScript{H}$ and the set of all Fredholm operators on $EuScript{H}$ are connected graphs.
کلیدواژهها [English]