[1] Azizi Mayvan A. and Motallebi M.R., Ekeland’s type variational principle for locally convex conevalued
functions, J. Fixed Point Theory Appl., 23(4) (2021). https://doi.org/10.1007/s11784-021-
00902-z.
[2] Azizi Mayvan A. and Motallebi M.R., Pointwise well-posedness and scalarization of optimization
problems for locally convex cone-valued functions, Filomat, 34(5) (2020), 1571–1579.
[3] Farajzadeh A.P., On the scalarization method in cone metric spaces, Positivity, 18(4) (2014), 703-708.
[4] Keimel K. and Roth W., Ordered cones and approximation, Lecture Notes in Mathematics, vol. 1517,
Springer Verlag, Heidelberg-Berlin-New York, 1992.
[5] Megginson R.E., An introduction to Banach space theory, Springer-Verlag, New York, 1998.
[6] Motallebi M.R., Completeness on locally convex cones, C. R. Math. Acad. Sci. Paris 352(10) (2014),
785-789.
[7] Motallebi M.R., On weak completeness of products and direct sums in locally convex cones, Period.
Math. Hung., 75(2) (2017), 322-329.
[8] Motallebi M.R., Weak compactness of direct sums in locally convex cones, Stud. Sci. Math. Hung.,
55(4) (2018), 487-497.
[9] Motallebi M.R. and Saiflu H., Products and direct sums in locally convex cones, Can. Math. Bull.,
55(4) (2012), 783-798.
[10] Rudin W., Real and complex analysis, McGraw-Hill Inc., New York, 1974.
[11] Tavakoli M, Farajzadeh A.P, Abdeljawad T. and Suantai S., Some notes on cone metric spaces, Thai
J. Math., 16(1)(2018), 229-242.
[12] Yousefi Z. and Motallebi M.R., On sublinear quasi-metrics and neighborhoods in locally convex
cones, Filomat, 36(3) (2022), 721-728.
[13] Zangenehmehr P, Farajzadeh A.P. and Vaezpour S.M., On fixed point theory for generalized contractions
in cone metric spaces via scalarizing, Chiang Mai J. Sci., 42(4) (2015), 1038-1043.