Convergence Analysis of ‎Numerical ‎solution ‎of ‎Secon-order ‎r‎eaction-‎d‎iffusion ‎e‎quation with boundary ‎conditions

Document Type : Original Paper

Author

Department of Mathematics, Faculty of Science, Urmia University, P.O.Box 165, Urmia, Iran.

Abstract

‎The aim of this work is to provide a specific process for solving a reaction-diffusion partial differential equation with boundary conditions ‎(‎RPDEs)‎‎. ‎We first convert this ‎R‎PDE problem to Volterra-Fredholm integral equation (VFIE)‎, ‎because of the good numerical stability properties of integral operators in compare to differential operator‎, ‎then apply the numerical Tau method to solve the obtained integral equation‎. ‎‎‎‎We present the convergence analysis and error estimation of the Tau method based on the proposed process‎. ‎Applying the Tau method yields a system of the ordinary differential equation such that this system is solved by piecewise polynomial collocation methods‎. ‎Intended to show advantages of converting ‎RPD‎E to an integral equation‎, ‎we consider two cases to solve the proposed examples‎. ‎In the first case‎, ‎we apply the Tau method to solve the ‎converted ‎‎R‎PDE problem ‎(‎integral ‎form‎‎‎) and in the second case‎, ‎we solve ‎the ‎R‎PDE ‎problem‎ ‎directly ‎(direct ‎form‎‎)‎ by Tau method‎. ‎Comparing the numerical results‎, ‎we observe that the results obtained from the ‎integral ‎form‎ ‎ are higher than which obtained from the ‎direct ‎form‎‎‎‎.

Keywords

Main Subjects


[1] Alonso N., Bowers K., An alternating-direction sinc-Galerkin method for elliptic problems, J. Complex.,
25 (2009), 237–252.
[2] Andras Sz., Fredholm-Volterra equations, Fredholm-Volterra equations, Pure Math. Appl. (PU.M.A.),
13 (2002), 21–30.
[3] Boyd J. P., Chebyshev and Fourier Spectral Methods, second edition, Dover, Mineola, NY, (2001).
[4] Brunner H., Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge
University Press, 2004.
[5] Cannon R., The solution of the heat equation subject to the specification of energy, Q. Appl. Math.,
21 (1963).
[6] Canuto C., Hussaini M. Y., Quarteroni A., Zang T. A., Spectral Methods Fundamentals in Single
Domains, Springer-Verlag, 2006.
[7] El-Gamel M., Error analysis of sinc-Galerkin method for time-dependent partial differential equations,
Numer. Algor., DOI 10.1007/s11075-017-0326-9.
[8] Ghoreishi F., Hadizadeh M., Numerical computation of the Tau approximation for the Volterra–
Hammerstein integral equations, Numer. Algorithms, 52 (2009), 541–559.
[9] Gottlieb D., Orszag S. A., Numerical Analysis of Spectral Methods, SIAM, Philadelphia, 1986, 4th
print.
[10] Hosseini Aliabadi M., The Buchstab’s function and the operational Tau method, Korean J. Comput.
Appl. Math., 7 (3) (2000), 673-683.
[11] Hosseini Aliabadi M., The application of the operational Tau method on some stiff system of ODEs,
Int. J. Appl. Math., 2 (9) (2000), 1027-1036.
[12] Hosseini Aliabadi M., Solving ODE BVPs using the perturbation term of the Tau method over semiinfinite
intervals, Far East J. Appl. Math., 4 (3) (2000), 295-303.
[13] Hosseini Aliabadi M., Ortiz E. L., Numerical treatment of moving and free boundary value problems
with the Tau method, Comput. Math. Appl., 35 (8) (1998), 53-61.
[14] Hosseini Aliabadi M., Ortiz E. L., A Tau method based on non-uniform space time elements for the
numerical simulation of solitons, Comput. Math. Appl., 22 (9) (1991), 7-19.
[15] Li X., Tang T., Convergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral
equations of second kind, Front. Math. China, 7 (2012), 69-84.
[16] Mitrinović D. S., Pečarić J. E. and Fink A. M., inequalities Involving Functions and Their Integrals
and Drivatives, Springer-Science+Business Media Dordrecht, 1991.
[17] Mokhtary P. and Ghoreishi F. , The L2-convergence of the Legendre spectral Tau matrix formulation
for nonlinear fractional integro-differential equations, Numer. Algorithms, 58 (2011), 475-496.
[18] Namasivayam S. and Ortiz E. L., Dependence of the local truncation error on the choice of perturbation
term in the step by step Tau method for systems of differential equations, Imperial College, Res.
Rep. NAS 06-09-81, 1982.
[19] Ortiz E. L., The Tau method, SIAM J. Numer. Anal., 6 (1969), 480-492.
[20] Ortiz E. L., Samara L., An operational approach to the Tau method for the numerical solution of
nonlinear differential equations, Computing, 27 (1981) 15-25.
[21] Ortiz E. L., Samara H., Numerical solution of partial differential equations with variable coefficients
with an operational approach to the Tau method, Comput. Math. Appl., 10 (1) (1984), 5-13.
[22] Saadatmandi A. and Razzaghi M., A Tau method approach for the diffusion equation with nonlocal
boundary conditions, , International Journal of Computer Mathematics, 81(11)b(2004), 1427–1432.
[23] Shen J., Tang T., Wang L. L., Spectral Methods, Algorithms, Analysis and Applications, firsted,
Springer, New York, (2011).
[24] Wang S. and Lin Y., A numerical method for the diffusion equation with nonlocal boundary specifications,
International Journal of Engineering Science, 28 (1990), 543–546.