[1] هاشمی، ا. پورخواجویی، س. و گلی، س، پایه مرزی ایده آل نقاط و کاربرد آن در مسئله طرح آزمایش ها و رگرسیون، نشریه پژوهش های ریاضی مصاحب، دوره 6، شماره 4، زمستان 1399.
[2] Buchberger B., ”Bruno Buchberger’s phD thesis 1965: An algorithm for finding the basis elements of
the residue class ring of a zero dimensional polynomial ideal, Translation from the German, J. Symb.
Comput., 41 3-4 (2006), 475-511
[3] Cox D., Little J. and Oshea D., Ideals, Varieties and Algorithm: An Introduction to computational
Algebraic Geometry and Commutative Algebra, New York: Springer (1992).
[4] Farr J.B. and Gao S., Computing Gröbner bases for vanishing ideals of finite sets of points, In Applied
algebra, algebraic algorithms and errorcorrecting cods, 16th international symposium, AAECC-16,
Las Vegas, NV, USA, February 20-24, 2006. Proceedings. Berlin: Springer (2006), 118–127.
[5] Faugére J.C., A new efficient algorithm for computing Gröbner bases (F4), Journal of pure and applied
algebra , 139.1-3 (1999), 61–88.
[6] Faugére J.C., A new efficient algorithm for computing Gröbner bases without reduction to zero (F 5),
Proceedings of the 2002 international symposium on Symbolic and algebraic computation, ( 2002).
[7] Kaspar S., Computing border bases without using a term ordering, Beitr. Algebra Geom. 54, 1 (2013),
211-223.
[8] Kehrein A. and Kreuzer M., Computing border bases, Journal of Pure and Applied Algebra, 205.2
(2006), 279–295.
[9] Kehrein A. and Kreuzer M., Characterizations of border bases, Journal of Pure and Applied Algebra
196, 2-3 (2005), 251–270.
[10] Kehrein A., Kreuzer M. and Robbiano L., An algebraist’s view on border bases, in:I. Emiris, A.
Dickenstein(Eds.), Solving polynomial equations, Algorithms and computation in mathematics, vol.
14, Springer, Heidelberg, 2005. pp. 169–202.
[11] Kreuzer M. and Poulisse H., Subideal border bases Math. Comput. 80, 274 (2011), 1135–1154
[12] Kreuzer M. and Robbiano L., Computational commutative algebra 2. Vol. 2. Springer Science and
Business Media (2005).
[13] Lakshman YN., A single exponential bound on the complexity of computing Gröbner bases of zero
dimensional ideals, In Effective Methods in Algebraic Geometry, Birkhäuser, Boston, MA (1991),
227–234.
[14] Laubenbacher R. and Stigler B., A computational algebra approach to the reverse engineering of
gene regulatory networks Journal of theoretical biology, 229.4 (2004), 523–537.
[15] Lundqvist S., Vector space bases associated to vanishing ideals of points, Journal of Pure and Applied
Algebra, 214.4 (2010), 309–321.
[16] Marinari M., Möller H.M. and Mora T., Gröbner bases of ideal given by dual bases, In ISSAC
’91. Proceedings of the 1991 international symposium on Symbolic and algebraic computation. Bonn,
Germany, July 15-17, 1991. New York, NY: ACM Press (1991), 55-63.
[17] Marinari M., Möller H.M. and Mora T., Gröbner bases of ideals defined by functionals with an
application to ideals of projective points. Appl. Algebra Engrg. comm. comput., (1993), 103-145.
[18] Möller H.M., Mora T. and Traverso C., Gröbner bases computation using syzygies, In International
symposium on symbolic and algebraic computation 92. ISSAC 92. Berkeley, CA, USA, July 27-29,
1992. Baltimore, MD: ACM Press (1992), 320-328.
[19] Möller HM. and Buchberger B., The construction of multivariate polynomials with preassigned zeros,
European Computer Algebra Conference. Springer, Berlin, Heidelberg (1982), 24–31.
[20] Mourrain B., A new criterion for normal form algorithms, International Symposium on Applied Algebra,
Algebraic Algorithms, and Error-Correcting Code, Springer, Berlin, Heidelberg (1999), 430–442.
[21] Mourrain B., Pythagore’s dilemma, symbolic-numeric computation, and the border basis method,
In Symbolic-numeric computation. Invited and contributed presentations given at the international
workshop(SNC 2005), Xi’an, China, July 19-21 (2005), Basel: Birkhauser (2007), 223-243.
[22] http://faculty.du.ac.ir/rahmani/