پیرامون گاما نیم ابرگروه های مرتب و شبه مرتب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه ریاضی، دانشکده علوم پایه، دانشگاه هرمزگان، بندرعباس، ایران

2 گروه ریاضی، دانشکده ریاضی، دانشگاه یزد، یزد، ایران

چکیده

Γ-اَبَرساختارهای جبری تعمیم اَبَرساختارهای جبری و ساختارهای جبری کلاسیک هستند. یکی از این Γ-اَبَرساختارهای جبری، Γ-نیم‌اَبَرگروه است که تعمیمی از Γ-نیم‌گروه‌ها و نیم‌گروه‌ها است. در این مقاله مفهوم Γ-نیماَبَرگروه‌های شبه مرتب و مرتب به عنوان تعمیمی از نیم‌اَبَرگروه‌های مرتب و شبه مرتب بیان و بررسی می‌شود و با استفاده از رابطه‌ی شبه مرتب، Γ-نیماَبَرگروه‌‌های شبه مرتب مشخصه‌سازی می‌شوند. همچنین بخش کامل و رابطه‌ی اساسی روی Γ-نیم‌اَبَرگروه‌های شبه مرتب معرفی و بررسی می‌شود. درنهایت با استفاده از Γ-نیم‌اَبَرگروه‌های شبه مرتب و مرتب، ساختار نیم‌اَبَرگروه شبه مرتب و مرتب معرفی می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

On order and quasi order Γ-semihypergroups

نویسندگان [English]

  • Sohrab Ostadhadi-Dehkordi 1
  • Bijan Davvaz 2
  • Noreh Rakhsh Khorshid 1
1 Department of Mathematics, Faculty of Basic Science, Hormozgan University, Bandar Abbas, Iran
2 Department of Mathematics, Faculty of Mathematic Science, Yazd University, Yazd, Iran
چکیده [English]

The Γ–hyperstructres algebraic are generalization of hypestructures algebraic and classical structures. One of them is Γ –semihypergroup that is a generalization of semihypergroups and semigroup. In this paper, we introduce the concept of quasi order Γ-semihypergroup and order Γ-semihypergroup as a generalization of quasi order semihypergroup and order semihypergroup, respectively. Also, we characterize quasi order Γ-semihypergroup by quasi order relation and introduce complete pats and fundamental relation in quasi order Γ-semihypergroup. Finally, we construct quasi order semihypergroup and order semihypergroup by quasi order Γ-semihypergroup and order Γ-semihypergroup.

کلیدواژه‌ها [English]

  • Fundamental relation
  • complete part
  • transitive closure
  • regular and strongly regular relation
[1] F. Marty, Sur une generalization de la notion de group, 8th Congress of Mathematicians Scandinaves.(1934) 45–49.
[2] P. Corsini, Prolegomena of hypergroup theory, 2nd edition, Aviani Editore, 1993.
[3] B. Davvaz and V. Leoreanu-Fotea, Hyperring theory and applications, International Academic PressUSA, 2007.
[4] S. O. Dehkordi, B. Davvaz, A strong regular relation on Γ -semihyperrings, J. Sci. I. R. I. 22(3) (2011)257–266.
[5] S. O. Dehkordi, B. Davvaz, Γ -semihyperrings: Approximations and rough ideals, Bull. Malays. Math.Sci. Soc. 35(4) (2012) 1035–1047.
[6] S. O. Dehkordi, m-Ary hypervector space: Convergent sequence and Bundle Subsets, Iran. J. Math.Sci. Inform. 11(2) (2016) 23–41.
[7] S. O. Dehkordi, B. Davvaz, A note on isomorphism theorems of Krasner (m, n)-hyperrings, Arab. J.Math. 5 (2016) 103–115.
[8] S. O. Dehkordi, M. Heidari, General Γ -hypergroups: θ relation, T-Functor and Fundamental groups,Bull. Malays. Math. Sci. Soc. 37(2) (2014) 907–921.