[1] Barndorff O., Nielsen E., Non-Gassian Ornstein-Uhlenbeck Based Models some of their uses in financialEconomics, J. R. Stat. Soc., B: Stat. Methodol., 63 (2001), 167–241.
[2] Celeux G., Diebolt J., The SEM algorithm: A probabilistic teacher algorithm derived from the EMalgorithm for the mixture problem, Computational Statistics Quarterly, 2 (1985), 73–-82.
[3] Dempester A., Lird N., Rubin D., Maximum Likelihood from Incomplete Data via the EM algorithm,J. R. Stat. Soc., B: Stat. Methodol., 39 (1977), 1–38.
[4] Engle R.F., Manganelli S., CAViaR:Conditional autoregressive value at risk by regression quantiles,J. Bus. Econ. Stat., 22 (2004), 367–381.
[5] Ferreira G., Luis M.C., Lachos V.H., Bayesian modeling of autoregressive partial linear models withscale mixture of normal errors, J. Appl. Stat., 40 (2013), 1796–1816.
[6] Ghasemzadeh S., Ganjali M., Baghfalaki T., Quantile regression via the EM algorithm for joint modelingof mixed discrete and continuous data based on Gaussian copula, Stat. Methods Appl., 31 (2022),1–22.
[7] Hajrajabi A., Fallah A., Classical and Bayesian Estimate of the AR(1) Model with Skew Symmetric
innovations, J. Iran. Stat. Soc., 18 (2019), 157–175.
[8] Hajrajabi A., Maleki M., Nonlinear Semiparametric autoregressive model with finite mixtures of scalmixtures of skew normal innovations, J. Appl. Stat., 46 (2019), 2010–2029.
[9] Koenker R., Bassett J., Regression Quantiles, Econometrica, 46 (1978) 33–50.
[10] Koenker R., Xiao Z., Quantile autoregression, J. Am. Stat. Assoc., 101 (2006), 980–990.
[11] Kozumi H., Kobayashi G., Gibbs sampling methods of Bayesian quantile regression, J. Stat. Comput.Simul., 81 (2011), 1565–1578.
[12] Li G., Li Y., Tsai C.L., Quantile correlations and quantile autoregressive modeling, J. Am. Stat.
Assoc., 110 (2015), 246–261
[13] Liu J., Kumar S., Palomar D.P., Parameter estimation of Havy-tailed AR model with Missing Datavia Stochastic EM algorithm, IEEE Trans. Signal Process., 67 (2019), 2159–2172.
[14] Morán‐Vásquez R.A., Mazo‐Lopera M.A., Ferrari S.L., Quantile modeling through multivariate
log‐normal/independent linear regression models with application to newborn data, Biom. J., 63
(2021), 1290–1308.
[15] Nduka U.C., EM-based algorithms for autoregressive models with t-distributed innovations, Commun.Stat. - Simul. Comput., 47 (2018), 206–228.
[16] Tian Y., Tang M., Zang Y., Tian M., Quantile regression for linear models with autoregressive errorsusing EM algorithm, Comput. Stat., 33 (2018), 1605–1625.
[17] Tao Y., Yin J., Maximum likelihood estimation for quantile autoregression models with Markovianswitching, Commun. Stat. Theory Methods, (2022), 1–29.
[18] Yu K., Moyeed R.A., Bayesian quantile regression, Stat. Probab. Lett., 54 (2001), 437–447.
[19] Zhou Y.H., Ni Z.X., Li Y., Quantile Regression via the EM Algorithm, Commun. Stat. - Simul.
Comput., 43 (2014), 2162–2172.
[20] Zeng Z., Li M., Bayesian median autoregression for robust time series forecasting, Int. J. Forecast.,37 (2021), 1000–1010.