On the properties of the Boolean algebras induced by a unital lattice ordered group

Document Type : Original Paper

Authors

1 ) Department of Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, Iran.

2 ) Faculty of Mathematics, Department of Science., University of Qom, Qom, Iran.

Abstract

In this paper we study the relations between unital lattice-ordered groups and Boolean algebras. At first we prove some main results about the properties of lattice-ordered groups. Then we see that every unital lattice-ordered group induces a Boolean algebra and we investigate some properties of the Boolean algebra. For instance, we prove that the Boolean algebra induced by the lattice-ordered group of all measurable real valued functions on a measure space, consists of all characteristic functions. We also see that in some cases, these Boolean algebras are trivial.

Keywords

Main Subjects


[1] Aliprantis, C. D and Burkinshaw, O., Locally Solid Riesz Spaces with Applications to Economics, MathSurveys and Monographs, Volume 105, American Math. Society, 2003. MR 2005b:46010.
[2] Ball R. N., Topological lattice-ordered groups, Pacific Journal of Mathematics, Vol. 83, No. 1 (1979)1-26.
[3] Banaschewski B., Ebrahimi M.M. and Mahmoudi M., On the normal completion of Boolean algebra,Journal of pure and applied algebra (2003) 1-14.
[4] Birkhoff, G.,Lattice Theory, A.M.S. Colloquium Publications XXV, Providence, RI 1967.
[5] Chang C.C., Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. Vol. 88 (1958) 467-490.
[6] Cignoli R., Ottaviano I. M. L. D and Mundici D., Algebraic Foundations of many-valued Reasoning,Kluwer Academic Publ, Dordrecht (2000).
[7] Darnel M. R, Theory of lattice − ordered groups, Marcel Dekker, New York (1995).
[8] Dvurecenskij D. and Pulmannova S., New trends in quantum structures, Springer Science-Dortrecht(2000).
[9] Glass A. M. W., Partially Ordered Groups, World Scientific Publishing Co. Pte. Ltd (1999).
[10] Foulis D. J., Compressions on partially ordered abelian groups, Proc. Amer. Math. Soc. 132 (2004),3581–3587.
[11] Foulis D. J. and Pulmannova. S., Monotone σ-Complete RC-Groups, J. London Math. Soc, Vol. 73,No. 2 ( 2006) 304-324.
[12] Goodearl K. R., Partially Ordered Abelian Groups With Interpolation, Amer. Mathematical Society(Mathematical Surveys and Monographs) (2010).
[13] Hahn H., Uber die nichtarchimedischen Groben-systeme, Sitz. ber. K. Akad. der Wiss., Math. Nat.KI. IIa Vol. 116 (1907) 601-655.
[14] Halmos P. and Givant S., Introduction to Boolean Algebras, Springer-Verlag New York (UndergraduateTexts in Mathematics) (2009).
[15] Jordan F. and Pajoohesh H., Topologies on abelian lattice ordered groups induced by a positive filterand completeness, Algebra Universalis, 79(62) (2018) 1-18.
[16] Kadison R.V., A representation theory for commutative topological algebra, Mem. A M S, No. 7(1951).
[17] Koppelberg S., Handbook of Boolean algebras, Vol. 1. Edited by J. Donald Monk and Robert Bonnet.North-Holland Publishing Co., Amsterdam, (1989).
[18] Kopperman R., Pajoohesh H. and Richmond T., Topologies arising from metrics valued in abelianl-groups, Algebra Universalis, 65 (2011) 315-330.
[19] Mahmoudi M., M-Boolean envelope of M-distributive lattices, Italian journal of pure and appliedmathematics (2001) 133-138.
[20] Mundici D., Interpretation of AF C*-algebras in Lukasiewicz sentential calculus, J. Funct. Anal, 65(1986) 15-63.
[21] Pourgholamhossein M. and Ranjbar M.A., On the topological mass Lattice Groups, Positivity, 23(4)(2019) 811-827.
[22] Ranjbar M.A and Pourgholamhossein M., Filter and weak link topologies, Algebra Universalis, 81,41 (2020). https://doi.org/10.1007/s00012-020-00670-w.
[23] Vladimirov D.A., Boolean algebras in analysis, Springer Science Business Media Dordrecht (2002).
[24] Wu S., Luan W. and Yang Y., Filter topologies on MV -algebras ll, Soft Computing, 24 (2020)
3173–3177.