بررسی تاثیر کسر حجمی، عدد رینولدز و نرخ اتساع دیواره نفوذپذیر رگ بر جریان انتقال حرارت نانوسیال طلا/مس خون با استفاده از روش تجزیه آدومیان

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه ریاضی کاربردی، دانشکده علوم ریاضی، دانشگاه مازندران، بابلسر، ایران

چکیده

در این مقاله، به بررسی تاثیر کسر حجمی، عدد رینولدز و نرخ اتساع دیواره های نفوذپذیر رگ در مدل دوبعدی جریان انتقال حرارت نانوسیال طلا/مس خون پرداخته شده است. برای این منظور خون را به عنوان سیال پایه در نظر می گیریم که در آن واحدهایی از نانوذرات طلا یا مس تزریق شده است. مدل ریاضی این پدیده به صورت معادله دیفرانسیل معمولی غیرخطی از مرتبه چهارم درخواهد آمد. در این مقاله، برای حل عددی این مدل غیرخطی با شرایط مرزی از روش تجزیه آدومیان استفاده شده است. مقایسه جواب های عددی به دست آمده از روش تجزیه آدومیان با جواب های تحلیلی به دست آمده از روش آنالیز هموتوپی ) ،(HAMنشان می دهد که جواب های عددی و تحلیلی مطابقت خوبی با هم دارند. هم چنین، با توجه به نتایج به دست آمده، می توان دریافت که با افزایش تعداد واحدهای نانوذره طلا/مس در سیال پایه، خواص حرارتی چه تغییراتی خواهد داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the effect of volume fraction, Reynolds number and dilation rate of permeable wall of vessel on the heat transfer flow of gold/copper nanofluid of blood using the Adomian decomposition method

نویسندگان [English]

  • AllahBakhsh Yazdani Cherati
  • Allahbakhsh Azimi
Department of َApplied Mathematics, Faculty of Mathematical Science, University of Mazandaran, Babolsar, Iran
چکیده [English]

In this paper, the effects of volume fraction, Reynolds number and dilation rate on the permeable walls of the vessel in the gold-copper-nanofluid heat transfer model in two-dimensional of blood are investigated. For this purpose, we consider blood as the base fluid in which units of gold or copper nanoparticles are injected. The mathematical model of this phenomenon is in the form of nonlinear ordinary differential equation of the fourth order. In this paper, the Adomian decomposition method is used to numerically solve this nonlinear model with boundary conditions. Comparing the numerical solutions obtained from the Adomian decomposition method with the analytical solutions obtained from the homotopy analysis method (HAM), shows that the numerical and analytical solutions are in good agreement. Also, according to the obtained results, it can be understood that with increasing the number of gold-copper nanoparticles in the base fluid, what will be the thermal properties.

کلیدواژه‌ها [English]

  • Reynolds number
  • nanofluid flow
  • Dilation rate of permeable wall
  • Volume fraction
  • Adomian decomposition method
١] ا. افشار، ر. پوررجب، بررسی ویژگی های انتقال حرارت در مقیاسنانو چهارمین کنفرانسملی سیستم های مکانیکی و نوآوری های صنعتی، ]
. اهواز، ١٣٩۵
٢] ر. اسماعیلی، م. قوتمند، ج. وحیدی، حل معادلات دیفرانسیل غیرخطی با روش تجزیه آدومیان تعمیم یافته، پایان نامه، مقطع کارشناسی ]
. ارشد، دانشگاه شاهرود، ١٣٩۴
٣] پ. سرگلزایی ، م. شمسی گوشکی، بررسی هم گرایی سری آدومیان برای معادلات انتگرال غیرخطی ، چهل و چهارمین کنفرانسسالانه ]
. ریاضی ایران، ١٣٩٢
۴] م. کمال غریبی، ا. زمزمیان، هرمزی فرامرزی، بررسی تجربی پایداری نانوسیالات اکسید مسبر پایه یون زدایی شده و دستیابی به شرایط ]
. بهینه پایداری، دوره ۴٨ ، شماره ١، صفحه ١٧ تا ٣٠ ، نشریه علمی پژوهشی امیرکبیر-مهندسی مکانیک، ١٣٩٣
 
[5] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer AcademicPublishers, Dordrecht , 1994.
[6] G. Adomian, Nonlinear Stochastic Systems Theory and Applications to Physics, Kluwer, Dordrecht,1989.
[7] G. Adomian and R. Rach, Analytic solution of nonlinear boundary-value problems in several dimensions
by decomposition, J. Math. Anal. Appl, 174 (1993) 118–137.
[8] G. Adomian and R. Rach, Modified decomposition solution of linear and nonlinear boundary-valueproblems, Nonlinear Anal. 23 (1994) 615–619.
[9] O. Aliu, O. Sakidin, H. Foroozesh and N. Yahya, Lattice Boltzmann application to nanofluids
dynamics-A review, Journal of Molecular Liquids, 112284, 2019.
[10] S. U. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles (No.
ANL/MSD/CP-84938; CONF-951135-29), Argonne National Lab., IL (United States), 1995.
[11] M. Dehghan and M, Tatari, Finding approximate solutions for a class of third-order non-linear boundaryvalue problems via the decomposition method of Adomian, Int. J. Comput. Math., 87 (2010) 1256–1263.[12] T. Hayat, S. Qayyum, M. Imtiaz and A. Alsaedi, Heat Mass Transfer, 102 (2016) 723–732.[13] T. Hayat, S. Qayyum, M. Imtiaz and A. Alsaedi, Comparative study of silver and copper waternanofluids with mixed convection and nonlinear thermal radiation, International Journal of Heat andMass Transfer, 102 (2016) 723-732.
[14] H. H. Kampinga, and E. Dikomey, Hyperthermic radiosensitization: mode of action and clinical
relevance, International journal of radiation biology, 77 (2001) 399-408.
[15] S. Lee, S. S. Choi, S. A. Li J. A. Eastman, Measuring thermal conductivity of fluids containing oxidenanoparticles, 1999.
[16] Y. M. Chen and J. K. Liu, A study of homotopy analysis method for limit cycle of van der Pol equation,Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 1816-1821.
[17] S. Liao, Beyond perturbation: introduction to the homotopy analysis method. Chapman and
Hall/CRC, 2003.[18] J. Majdalani, C. Zhou and C. A. Dawson, Two-dimensional viscous flow between slowly expandingor contracting walls with weak permeability, Journal of Biomechanics, 35 (2002), 1399-1403.
[19] J. Majdalani and C. Zhou, Moderate‐to‐large injection and suction driven channel flows with expandingor contracting walls, ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift fürAngewandte Mathematik und Mechanik, Applied Mathematics and Mechanics, 83 (2003), 181-196.[20] P. A. Naik, J. Zu and M. Ghoreishi, Estimating the approximate analytical solution of HIV viraldynamic model by using homotopy analysis method, Chaos, Solitons and Fractals, 131, 109500, 2020.[21] R. Subramanyam, S. Srinivas and K. Jagadeshkumar, Blood-gold/coppernanofluid flow betweenexpanding or contracting permeable walls with slip effects, Materials Today: Proceedings, 9, 351-360, 2019
[22] M. Tatari and M. Dehghan, The use of the Adomian decomposition method for solving multipoint
boundary value problems, Phys. Scripta, 73 (2006) 672–676.
[23] S. Uchida, S and H. Aoki, H, Unsteady flows in a semi-infinite contracting or expanding pipe, Journalof Fluid Mechanics, 82 (1977), 371-387.
[24] A. M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Higher Education, Beijing,Springer, Berlin, 2009.[25] A. M. Wazwaz, Approximate solutions to boundary value problems of higher order by the modifieddecomposition method, Comput. Math. Appl., 40 (2000) 679–691.