یک روش جدید برای حل عددی دستگاه معادلات انتگرال فوق منفرد

نوع مقاله : مقاله پژوهشی

نویسنده

گروه ریاضی، دانشکده ریاضی، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

دستگاه معادلات انتگرال فوق منفرد به طور کاملا طبیعی در چندین شاخه از علم و مهندسی در

طی فرمول بندی بسیاری از مسائل مقدار مرزی رخ می دهد. جواب تحلیلی برای سیستم معادلات غالب

شناخته شده است. با این حال، بسیاری از مسائل دنیای واقعی مانند مسائل ترک در زمینه مکانیک

شکست وجود دارد که ممکن است به صورت دستگاه معادلات غالب فرموله نشود. بنابراین، در این

مقاله ما یک روش عددی را برای یافتن جواب تقریبی برای چنین شکل کلی پیشنهاد می کنیم. سپس

همگرایی روش پیشنهادی را نشان می دهیم. این همگرایی به به دست آوردن کران خطا برای خطای بین

جواب دقیق و تقریبی کمک می کند. در پایان با ارائه مثال عددی، کارایی این روش نشان داده خواهد

شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of a new method for the numerical solution of a system of hypersingular integral equations

نویسنده [English]

  • Elham Rezazadeh
Department of Mathematics, Faculty of Applied Mathematics, K. N. Toosi University of Technology, Tehran, Iran
چکیده [English]

The system of hypersingular integral equations occurs naturally in several branches of science

and engineering during the formulation of many boundary value problems. The analytical solution for the

system of dominant equations is known. However, many real-world problems, such as cracking problems

in fracture mechanics, may not be formulated as a set of dominant equations. Therefore, we propose a

numerical method to find an approximate solution for such a generalized form. The convergence of the

proposed method is proved. This convergence helps to derive the error bound for the error between the

exact and the approximate solution. Finally, by providing a numerical example, the efficiency of this

method will be presented.

کلیدواژه‌ها [English]

  • Hypersingular integral equations
  • Legendre polynomials
  • Galerkin method
  • Hadamard finite-part integral
[1] C.M. Linton., N.G. Kuznetsov.,Non-uniqueness in two-dimensional water wave problems: numericalevidence and geometrical restrictions, Proc. R. Soc.Lond. Ser. A Math. Phys. Eng. Sci. 453 , 2437–2460, (1997).
[2] C.S. Kubrusly.,Spectral Theory of Operators on Hilbert Spaces, Birkhuser/Springer, New York,
(2012).[3] D.F. Paget.,The numerical evaluation of Hadamard finite-part integrals, Numer. Math. 36 , 447–453,(1981).
[4] E.G. Ladopoulos., Singular Integral Equations, Linear and Non-Linear Theory and Its Applicationsin Science and Engineering, Springer-Verlag, Berlin, New York, (2000).
[5] G. Monegato., R. Orta., R. Tascone.,A fast method for the solution of a hypersingular integral equationarising in a waveguide scattering problem, Internat.J. Numer. Methods Engrg. 67 , 272–297,(2006).
[6] G. Iovane., I.K. Lifanov., M.A. Sumbatyan., On direct numerical treatment of hypersingular integralequations arising in mechanics and acoustics, Acta Mech. 162 , 99–110, (2003).
[7] J. Hadamard, Lectures on Cauchy’S Problem in Linear Partial Differential Equations, Yale UniversityPress, New Haven, (1923).
[8] L.A. Lacerda., L.C. Wrobel.,Hypersingular boundary integral equation for axisymmetric elasticity,Internat. J. Numer. Methods Engrg. 52 , 1337– 1354, (2001).
[9] L. Farina., P.A. Martin., V. Peron.,Hypersingular integral equations over a disc: convergence of
a spectral method and connection with Tranter’s method, Journal of Computational and Applied
Mathematics., 269 , 118–131, (2014).
[10] N.I. Muskhelishvili, Singular Integral Equations, Noordhoff, Groningen, (1953).
[11] N.M.A. Nik Long., Z.K. Eshkuvatov.,Hypersingular integral equation for multiple curved cracks
problem in plane elasticity, Int. J. Solids Struct. 46 , 2611–2617, (2009).
[12] P. Solín, Differential Equations and the Finite Element Method, John Wiley and Sons Inc. Hoboken,New Jersey, (2006).
[13] W.T. Ang.,Hypersingular Integral Equations in Fracture Analysis, Woodhead Publishing, Cambridge,(2013).
[14] W.T. Ang.,Hypersingular integral equations for a thermoelastic problem of multiple planar cracksin an anisotropic medium, Eng. Anal. Bound. Elem.23 , 713–720, (1999).
[15] Y.S. Chan., A.C. Fannjiang., G.H. Paulino.,Integral equations with hypersingular kernels theory andapplications to fracture mechanics, Internat. J. Engrg. Sci. 41 , 683–720, (2003).
[16] Y.Z. Chen.,A numerical solution technique of hypersingular integral equation for curved cracks,
Commun. Numer. Methods. Eng. 19 , 645–655, (2003).
[17] Y.Z. Chen.,Numerical solution of a curved crack problem by using hypersingular integral equationapproach, Eng. Fract. Mech. 46 , 275–283, (1993).
[18] Z. Chen., Y. Zhou.,A new method for solving hypersingular integral equations of the first kind, Appl.Math. Lett. 24 , 636–641, (2011).