[1] C.M. Linton., N.G. Kuznetsov.,Non-uniqueness in two-dimensional water wave problems: numericalevidence and geometrical restrictions, Proc. R. Soc.Lond. Ser. A Math. Phys. Eng. Sci. 453 , 2437–2460, (1997).
[2] C.S. Kubrusly.,Spectral Theory of Operators on Hilbert Spaces, Birkhuser/Springer, New York,
(2012).[3] D.F. Paget.,The numerical evaluation of Hadamard finite-part integrals, Numer. Math. 36 , 447–453,(1981).
[4] E.G. Ladopoulos., Singular Integral Equations, Linear and Non-Linear Theory and Its Applicationsin Science and Engineering, Springer-Verlag, Berlin, New York, (2000).
[5] G. Monegato., R. Orta., R. Tascone.,A fast method for the solution of a hypersingular integral equationarising in a waveguide scattering problem, Internat.J. Numer. Methods Engrg. 67 , 272–297,(2006).
[6] G. Iovane., I.K. Lifanov., M.A. Sumbatyan., On direct numerical treatment of hypersingular integralequations arising in mechanics and acoustics, Acta Mech. 162 , 99–110, (2003).
[7] J. Hadamard, Lectures on Cauchy’S Problem in Linear Partial Differential Equations, Yale UniversityPress, New Haven, (1923).
[8] L.A. Lacerda., L.C. Wrobel.,Hypersingular boundary integral equation for axisymmetric elasticity,Internat. J. Numer. Methods Engrg. 52 , 1337– 1354, (2001).
[9] L. Farina., P.A. Martin., V. Peron.,Hypersingular integral equations over a disc: convergence of
a spectral method and connection with Tranter’s method, Journal of Computational and Applied
Mathematics., 269 , 118–131, (2014).
[10] N.I. Muskhelishvili, Singular Integral Equations, Noordhoff, Groningen, (1953).
[11] N.M.A. Nik Long., Z.K. Eshkuvatov.,Hypersingular integral equation for multiple curved cracks
problem in plane elasticity, Int. J. Solids Struct. 46 , 2611–2617, (2009).
[12] P. Solín, Differential Equations and the Finite Element Method, John Wiley and Sons Inc. Hoboken,New Jersey, (2006).
[13] W.T. Ang.,Hypersingular Integral Equations in Fracture Analysis, Woodhead Publishing, Cambridge,(2013).
[14] W.T. Ang.,Hypersingular integral equations for a thermoelastic problem of multiple planar cracksin an anisotropic medium, Eng. Anal. Bound. Elem.23 , 713–720, (1999).
[15] Y.S. Chan., A.C. Fannjiang., G.H. Paulino.,Integral equations with hypersingular kernels theory andapplications to fracture mechanics, Internat. J. Engrg. Sci. 41 , 683–720, (2003).
[16] Y.Z. Chen.,A numerical solution technique of hypersingular integral equation for curved cracks,
Commun. Numer. Methods. Eng. 19 , 645–655, (2003).
[17] Y.Z. Chen.,Numerical solution of a curved crack problem by using hypersingular integral equationapproach, Eng. Fract. Mech. 46 , 275–283, (1993).
[18] Z. Chen., Y. Zhou.,A new method for solving hypersingular integral equations of the first kind, Appl.Math. Lett. 24 , 636–641, (2011).