نوع مقاله : مقاله پژوهشی
نویسنده
گروه ریاضی، دانشکده علوم پایه، دانشگاه یاسوج، یاسوج، ایران
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسنده [English]
In this research, for a zero-dimensional space $X$, a Banach subalgebra $U(X)$ of $C^{*}(X,\mathbb{C})$ is introduced. It is shown that $U(X)$ is the uniform closure of the subalgebras $C^{F}(X,\mathbb{C})$ and $C^{*}_{c}(X,\mathbb{C})$ of the Banach algebra $C^{*}(X,\mathbb{C})$. Moreover a necessary and sufficient condition for the coincidence of $U(X)$ and $C^{*}(X,\mathbb{C})$ is given. It is shown that $U(X)$ consists exactly of all $f\in C^{*}(X,\mathbb{C})$ each of which has an extension to
$\beta_{\circ}X$. Using this fact, an isometric isomorphism from $U(X)$ onto $C(\beta_{\circ}X,\mathbb{C})$ is defined. Finally, a description of the elements of $U(X)$ in terms of the inverse image of the closed subsets of $\mathbb{C}$ is given.
کلیدواژهها [English]