ماتریس های زیرتصادفی سطری تعمیم یافته و مهتری

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه ریاضی، دانشکده علوم ریاضی، دانشگاه صنعتی سیرجان

چکیده

ماتریس مربعی و حقیقی ‎$A$‎ یک ماتریس زیر تصادفی سطری تعمیم یافته است هرگاه مجموع قدرمطلق درایه های هر سطر آن از یک بیشتر نباشد. برای دوبردار سطری ‎(ستونی) $x$‎ و ‎$y$‎، گوییم ‎$y$ $B$-‎مهتر راست ‎(چپ) $x$‎ است هرگاه ماتریس زیر تصادفی سطری تعمیم یافته ‎$A$‎ موجود باشد که ‎$x=yA$ ($x=Ay$)‎. ما دراین مقاله برای هر بردار سطری ‎$y$ (ستونی)‎ همه بردارهایی مانند ‎$x$‎ که ‎$y$ $B$-‎مهتر راست ‎(چپ)‎ آنهاست را پیدا کرده ایم و نشان داده ایم که رابطه هم ارزی که از ‎$B$-‎مهتری چپ بدست می آید معادل با نرم بینهایت و رابطه هم ارزی که از ‎$B$-‎مهتری راست بدست می آید معادل با نرم یک در فضای برداری ‎$n$-‎بعدی می باشد. همچنین نشان داده ایم تحت شرایطی ‎$B$-‎مهتری راست معادل با مهتری راست می باشد و همچنین شرایطی را پیدا کرده ایم که تحت این شرایط ‎$B$-‎مهتری چپ معادل با مهتری چپ می باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Generalized row substochastic matrices and majorization

نویسندگان [English]

  • Ahmad Mohammadhasani
  • Yamin Sayyari
Department of Mathematics, Sirjan University Of Technology, Sirjan, Iran
چکیده [English]

‎The square and real matricx $A$ is called a generalized row substochastic matrix‎, ‎if the sum of the absolute values of the entries in each row is less than or equal to one‎.

‎Let $x,y\in \mathbb{R}^n$‎. ‎We say that $x$ is right $B$-majorized (resp‎. ‎left $B$-majorized) by $y$‎, ‎denoted by $x \prec _{rB} y$ ($x \prec _{lB} y$)‎, ‎if there exists a substochastic matrix $D$‎, ‎such that $x=yD$ (resp‎. ‎$x=Dy$)‎. ‎In this article‎, ‎we have found all the vectors such as $x$ that $x$ is right $B$-majorized (resp‎. ‎left $B$-majorized) by $y$‎, ‎for all row vector $y$ (resp‎. ‎column vector)‎. ‎Also‎, ‎we show $x \sim _{lB} y$ if and only if $\Vert x\Vert_\infty =\Vert y\Vert_\infty$ and prove $x \sim _{rB} y$ if and only if $\Vert x\Vert_1 =\Vert y\Vert_1$‎.

‎We have also created conditions in which the left $B$-majorization is equivalent to the left majorization‎, ‎and created conditions in which the right $B$-majorization is equivalent to the right majorization‎.

کلیدواژه‌ها [English]

  • Majorization
  • B-majorization
  • row substochastic matrix
  • generalized row substochastic matrix
[1] ع. آرمندنژاد، مروری بر مهتری های عادی و تعمیم یافته و بررسی ساختار نگه دارنده های خطی آن ها، فرهنگ و اندیشه ریاضی، 45، (1389) 31-40.
[2] ا. محمدحسنی، ی. سیاری و م. سبزواری، نگه دارنده های خطی راست-چپ ماتریسی، موجک ها و جبر خطی،  8 (3) (1401) 37-59.
[3] A. Armandnejad and Z. Gashool, Strong linear preservers of g-tridiagonal majorization on Rn. Electronic Journal of Linear Algebra, 123 (2012) 115-121.
[4] A. Armandnejad, S. Mohtashami, and M. Jamshidi, On linear preservers of g-tridiagonal majorization on Rn. Linear Algebra and its Applications, 459 (2014) 145-153.
[5] R. Bahatia, Matrix Analysis. Springer-Verlag, New York, 1997.
[6] L. B. Beasley, S-G. Lee and Y-H Lee, A characterization of strong preservers of matrix majorization. Linear Algebra and its Applications, 367 (2003) 341-346.
[7] R. A. Brualdi and G. Dahl, An extension of the polytope of doubly stochastic matrices, Linear and Multilinear Algebra, 6 (3) (2013) 393-408.
[8] H. Chiang and C. K. Li, Generalized doubly stochastic matrices and linear preservers. Linear and Multilinear Algebra, 53 (2005) 1-11.
[9] G. Dahl, Matrix majorization, Linear Algebra Appl., 288 (1999) 53-73.
[10] Francisco D. Martínez Pería, Pedro G. Massey, Luis E. Silvestre, Weak matrix majorization, Linear Algebra and its Applications 403 (2005) 343–368.
[11] M.H. Hadian, A. Armandnejad, B-majorization and its linear preservers, Linear Algebra and its Application, 478 (2015) 218-227.
[12] A. M. Hasani, A. Ilkhanizadeh Manesh, Linear preservers of two-sided right matrix majorization on Rn, Adv. Oper. Theory, 3 (2018) 1-8
[13] A. M. Hasani and M. Radjabalipour, The structure of linear operators strongly preservingmajorizations of matrices.Electronic Journal of Linear Algebra, 15 (2006) 260-268.
[14] M. Marcus, All linear operators leaving the unitary group invariant, Duke Math. J. 26 (1959) 155-163.
[15] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of majorization and its applications. Springer, New York, 2011.