[1] ع. شکری، ع. بهمنی حل عددی معادله تلگراف دو بعدی با استفاده از روش پترو-گالرکین موضعی بدون شبکه بندی مستقیم ، مجله مدلسازی پیشرفته ریاضی، سال 1399، دوره 10، شماره 2، ص 267-287.
[2] S. N. Atluri, S. Shen. The Meshless Local Petrov-Galerkin (MLPG) Method. Tech Science Press, 2002.
[3] S. N. Atluri, S. Shen. The meshless local Petrov-Galerkin (MLPG) method: A simple and less costly alternative to the finite element and boundary element methods. Computer Modeling in Engineering and Sciences, 3(1) (2002) 11-52.
[4] E. Bahmani, A. Shokri Numerical study of the unsteady 2D coupled magneto-hydrodynamic equations on regular/irregular pipe using direct meshless local Petrov–Galerkin method. App Math and Comput 417 (2022) 126769.
[5] M. Darani, Direct meshless local Petrov–Galerkin method for the two-dimensional Klein-Gordon equation. Eng. Anal. Bound. Elem, 74 (2017) 1–13.
[6] R.A. Fisher, The wave of advance of advantageous genes. J Math Phys, 10 (1969) 1862–1868.
[7] C. José, Diffusion in nonlinear multiplicative media. Ann Eugen, 7(4) (1937) 355–369.
[8] A. Kolmogorov, N. Petrovsky, S. Piscounov Étude de l’équations de la diffusion avec croissance de la quantité de matière et son application a un problème biologique. Bull Univ Moskou, 1 (1937) 1–25.
[9] JE. Macias-Diaz, A bounded finite-difference discretization of a two-dimensional diffusion equation with logistic nonlinear reaction. Int J Mod Phys C 22(09) (2011) 953–966.
[10] D. Mirzaei, R. Schaback, M. Dehghan, On generalized moving least squares and diffuse derivatives. IMA Journal of Numerical Analysis, 32 (2012) 983–1000.
[11] D. Mirzaei, R. Schaback, Direct meshless local Petrov-Galerkin (DMLPG) method: A generalized MLS approximation. Applied Numerical Mathematics, 68 (2013) 73–82.
[12] D. Mirzaei, Error bounds for GMLS derivatives approximations of Sobolev functions. J. Comput.
Appl. Math, 294 (2016) 93–101.
[13] O. Oruç . An efficient wavelet collocation method for nonlinear two‑space dimensional Fisher-Kolmogorov-Petrovsky-Piscounov equation and two‑space dimensional extended Fisher–Kolmogorov equation. Engineering with Computers , https://doi.org/10.1007/s00366-019-00734-z.
[14] B.G. Pachpatte, Inequalities for differential and integral equations. San Diego: Academic Press, (1998), ISBN: 9780080534640.
[15] K. Parand, M. Nikarya, A numerical method to solve the 1D and the 2D reaction diffusion equation based on Bessel functions and Jacobian free Newton-Krylov subspace methods. Eur Phys J Plus. https://doi.org/10.1140/epjp/i2017-11787-x.
[16] W. Qin, D. Ding, X. Ding, Two boundedness and monotonicity preserving methods for a generalized Fisher-KPP equation. Appl Math Comput. 252 (2015) 552–567.
[17] J. Roessler, H. Hüssner Numerical solution of the 1+2 dimensional Fisher’s equation by finite elements and the Galerkin method. Math Comput Modell. 25 (1997) 57–67.
[18] D. Shepard. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 23th National Conference ACM, (1968) 517-523.
[19] A. Shokri, E. Bahmani, A study of nonlinear systems arising in the physics of liquid crystals, using MLPG and DMLPG methods. Mathematics and Computers in Simulation 187 (2021) 261–281.
[20] A. Shokri, E. Bahmani, Direct Meshless Local Petrov–Galerkin (DMLPG) method for 2D complex Ginzburg-Landau equation. Eng. Anal. Bound. Elem. 100 (2019) 195–203.
[21] S. Tang, S. Qin, RO. Weber, Numerical studies on 2-dimensional reaction–diffusion equations. J Aust Math Soc Sen B. 35 (1993) 223–243.
[22] S. Zheng, Nonlinear evolution equations. Monographs and surveys in pure and applied mathematics. Chapman and Hall/CRC, CRC Press, Boca Raton. (2004)
[23] W. Qin, D. Ding, X. Ding, Two boundedness and monotonicity preserving methods for a generalized Fisher-KPP equation. Applied Mathematics and Computation. 252 (2015) 552–567.
[24] M. El-Hachem, S. W. McCue, W. Jin, Y. Du and M. J. Simpson, Revisiting the Fisher–Kolmogorov–Petrovsky–Piskunov equation to interpret the spreading–extinction dichotomy, Proc. R. Soc. A.475: 20190378 http://doi.org/10.1098/rspa.2019.0378